Электронограмма митохондрии

Митохондрии. Структура и функции белковых комплексов мембраны

Электронограмма митохондрии

Митохондрии (МТ) – одно из самых интересных мне направлений исследований. Объединение митохондрий с другой клеткой в ходе эндосимбиоза около 1,6 млрд лет назад стало основной всех многоклеточных эукариотов со сложной структурой. Предположительно митохондрии произошли от клеток, напоминающих α-протеобактерии.

Лучшее обзорное исследование последнего времени по митохондриях – работа Вернера Кулбрандта «Структура и функция митохондриальных белковых комплексов мембраны». Если вы знаете английский язык и интересуетесь устройством этих органелл, то настоятельно рекомендую к прочтению.

Эта статья так хороша, что может быть смело главой хорошего учебника по молекулярной биологии. Сначала я хотел перевести всю статью, но это бы заняло непростительно много времени и оторвало бы от других дел. Поэтому ограничусь тезисами и картинками.

Периодически разбавляя все своими мыслями.

Митохондрия кодирует сама только 13 белков, не смотря на наличие отдельной от клетки ДНК (мтДНК) и всего «производственного» цикла по транскрипции белков. Изолированная митохондрия какое-то время может сохранять композицию и функционировать.

Рисунок 1. Компоненты мембраны митохондриона. Внешняя мембрана отделяет митохондрию от цитоплазмы. Она окружает внутреннюю мембрану, которая отделяет межмембранное пространство от богатого белками центрального матрикса. Внутреннюю мембрану разделяют на внутреннюю пограничную мембрану и кристы.

Две эти части непрерывны в местах крепления крист (cristae junction). Кристы простираются более или менее глубоко в матрикс и являются основным место митохондриального преобразования энергии.

Небольшой протоновый градиент в межмембранном пространстве (pH 7,2-7,4) и матрикс (pH 7,9-8,0) приводят к образованию АТФ АТФ-синтазой в мембранах крист.

Внешняя мембрана пористая и позволяет веществам из цитоплазмы проходить через нее. Внутренняя мембрана плотная, для ее пересечения нужны транспортные белки [Гилберт Линг обоснованно не согласен], непрерывность барьера позволяет иметь внутренней мембране электрохимический потенциал в -180 mV. У матрикса довольно большой pH (7,9-8). Еще раз углублюсь в Линга.

Щелочной (выше 7) pH способствует более развернутой конформации белков. Высокий pH нарушает водородные и солевые связи, делая поляризованные CO и NH доступными молекулам воды, там самым усиливая дипольный момент всей внутриклеточной воды и связывая ее.

В этом ключе наличие мембраны нужно не для «удержания» протоплазмы внутри клетки (это делают сами белки при высоком pH), а для наличия потенциала.

мтДНК находится в нуклеотидах, которых примерно 1000 на клетку. Белковая плотность матрикса довольна высокая (до 500 мг/мл), что близко к кристаллизованным белкам.

Внутренняя мембрана образует инвагинации, называемые кристами, которые глубоко проникают в матрикс. Кристы определяют третий «отсек» митохондрий – просвет крист (cristae lumen).

Мембраны кристы содержат большинство, если не все, полностью «собранные» комплексы цепи переноса электронов и АТФ-синтазы. Просвет кристы содержит большое количество маленького растворимого белкового переносчика электронов (цитохром с).

Митохондриальные кристы, таким образом, основное место биологической конверсии энергии во всех не фотосинтетических эукариотах.

С кристами тоже много всего интересного. Оптические свойства кристы влияют на распространение и генерацию света в тканях. Я даже встречал идеи о том, что поверхность крист подобна (предположение) поверхностям топологических изоляторов (подразумевалась суперпроводимость без диссипации заряда).

Рисунок 2. Мембранные белковые комплексы дыхательной цепи.

Комплекс I (NADH / убихинон оксидоредуктаза, синий), Комплекс II (сукцинат дегидрогеназа, розовы), Комплекс III (цитохром С редуктаза, оранжевый), Комплекс IV (цитохром С оксидаза, зеленый) и митохондриальная АТФ синтаза (известная как комплекс V, бежевая) работают вместе во время окислительного фосфорилирования, чтобы клетки могли использовать энергию. Комплексы I, III, IV выкачивают протоны вдоль мембраны кристы, создавая протоновый градиент, стимулирующий синтез АТФ.

Теперь немного внимания на комплекс II. Вы помните, что жир (кето) делает упор в метаболизме на FADH2 и комплекс II.

Они восстанавливают пару CoQ, в какой-то момент окисленного CoQ не хватает для транспортировки электронов на комплекс III и образует обратный поток электронов на комплекс I с образованием супероксида.

При долгом HFLC-питании комплекс I будет обратимо разрушен, при этом это нормальная физиологическая оптимизация.

Еще прошу вас заметить, что комплекс II не выкачивает протоны. Что у нас рассеивает протоновый градиент, нарушает фосфорилирование и стимулирует сжигание жиров на тепло? Правильно, стресс холода.

Термогенез связан с метаболизмом через комплекс, который не выкачивает протоны, тем самым не давая дополнительных протонов для АТФ-синтазы.

Можно только удивляться как замечательно у нас продуман организм.

Крепления крист и MICOS

Места крепления крист (cristae junctions) – маленькие круглы отверстия примерно 25 нм диаметром. В митохондриях всех организмов есть система MICOS (mitochondria contact site and cristae to outer membrane), сборка из пяти мембранных и одного растворимого белков, прикрепляющих кристы к наружной мембране.

В клетках с повышенной потребностью в энергии, такие как скелетные и сердечные мышцы, кристы плотно заполняют большую часть объема митохондрии. В тканях с меньшими потребностями в энергии, таких как печень и почки, кристы находятся не так плотно по отношению друг к другу. Остается больше места в матрице для биосинтетических ферментов.

Рисунок 3. Томографический объем митохондрии сердца мыши. А) Трехмерный объем митохондрии сердца мыши, снятый cryo-ET. Наружная мембрана (серая) окутывает внутреннюю мембрану (светло-синяя).

Внутренняя мембрана плотно наполнена кристами б) Томографический срез объема. Плотно заполненный матрикс, содержащий большую часть митохондриальных белков, выглядит темным на электронном микроскопе.

В то время как межмембранное пространство и просветы крист выглядят светлыми из-за низкой концентрации белков.

Димеры АТФ синтазы

Митохондриальная F1-F0 АТФ синтаза является самым заметным белковым комплексом кристы. АТФ синтаза – это древняя наномашина, которая использует электрохимический протновых градиент вокруг внутренней мембраны для создания АФТ посредством вращательного катализа.

Протоны, двигающиеся через F0 комплекс мембраны, вращают ротор из 8 (у млекопитающих) или 10 (у дрожжей) с-узлов. Центральный стебель передает крутящий момент c-ротора каталитической головке F1, где АТФ образуется из АДФ и фосфата через последовательность конформационных изменения.

Периферийный стебель предотвращает непродуктивное вращение Головы F1 против комплекса F0.

Многие годы считалось, что АТФ синтаза случайным образом располагается на внутренней мембране. Но оказалось, что АТФ синтаза располагается двойными рядами. Причем линейные ряды АТФ синтазы – фундаментальный атрибут всех живых митохондрий.

Рисунок 4. Двойные ряды АТФ синтазы у семи разных видов.

Ряды АТФ синтазы располагаются в основном вдоль хребтов крист. Димеры изгибают липидный бислой и как следствие само-организуются в ряды.

Когда у митохондрий дрожжей выбивали узлы e и g АФТ синтазы, то штамм рос на 60% медленней диких собратьев, и потенциал мембран их митохондрий был снижен вдвое.

У АФТ синтазы прокариотов недостает нескольких узлов, связанных с димерами, ряды димеров не были найдены у бактерий и архей. Кристы и ряды димеров АФТ синтазы, таким образом, являются адаптацией к большим энергетическим потребностям организма.

Рисунок 5. Структура димера АТФ синтазы митохондрии polymella sp. Вид сбоку на V-образный димер АТФ синтазы.

Комплексы и суперкомплексы дыхательной цепи

Протоновый градиент вокруг внутренней мембраны создается тремя крупными мембранными комплексами, известными как комплекс I, комплекс III и комплекс IV (см. рисунок 2). Комплекс I кормится электронами из NADH, высвобождаемая при передаче электрона энергия выкачивает четыре протона.

Комплекс III получает электрон от восстановленного хинола и передает его носителю электронов (цитохрому с), выкачивая в процессе один протон. Комплекс IV получает электрон из цитохрома с и передает его молекулярному кислороду, выкачивая 4 протона за каждую молекулу кислорода, превращенную в воду. Комплекс II не выкачивает протоны, напрямую передавая электроны хинолу.

Как перенос электронов из NADH в хинол связан с транслокацией протонов пока не ясно. Комплекс I – крупнее III и IV вместе взятых.

https://www.youtube.com/watch?v=f0tC0ZqscwY

Рисунок 6. Комплекс I митохондрии коровьего сердца. Матриксная часть содержит ряд из  восьми железно-серных (Fe-S) кластеров, которые направляют электроны из NADH в хинол на пересечении матрикса и мембраны. Мембранная часть состоит из 78 лопастей, включая выкачивающие протоны молекулы.

Комплексы I, III и IV соединяются в суперкомплексы или респирасомы. У пекарских дрожжей (saccharomyces cerevisiae) нет комплекса I, их суперкомплексы состоят из III и IV. Роль суперкомплексов пока еще не ясна. Предполагают, что это  делает транспорт электронов более эффективным, но прямых доказательств этому пока нет.

Рисунок 7. Суперкомплекс митохондрии коровьего сердца. Обратите внимание на дистанцию между комплексами I и III, который надо проделать хинолу. Стрелки – движения электрона в суперкомплексе.

Основным белком просвета кристы является цитохром с, который переносит электрон из комплекса III в комплекс IV. Если цитохром с высвобождается в цитоплазму клетки, то вызывает апоптоз.

Рисунок 8. Ряды димеров АТФ синтазы задают форму кристам.

У хребта кристы АФТ синтаза (желтый) образует слив для протонов (красный), протоновые насосы электронной цепи (зеленый) находятся по обоим сторона рядов димеров.

Направляя протоны от источника к АТФ синтазе, кристы работают как протоновые направляющие, позволяющие эффективное производство АТФ. Красные стрелки показывают направление потока протонов.

Реорганизация мембраны во время старения

Старение – фундаментальный и плохо понимаемый процесс всех эукариотов. Исследовали старение митохондрий на грибах Podospora anserina, которые живут всего 18 дней. В нормальной митохондрии кристы проникают глубоко в матрикс.

Для этого нужны ряды димеров АТФ синтазы и MICOS комплекс у мест крепления крист.

С возрастом кристы начинают все ближе подходить к поверхности мембраны, димеры АФТ синтазы превщаются в мономеры, и все заканчивается высвобождением цитохрома с и клеточной смертью.

Транспорт электронов создает супероксид в комплексах I и III. Это побочный продукт метаболизма. Одновременно необходимый и смертельно опасный. Во время старения деление (fission) начинает превалировать над сращением (fussion). Это не дает поврежденным митохондриям «спастись» путем сращения и ускоряет неизбежное.

Рисунок 9. Изменения морфологии внутренней мембраны и димеров АТФ синтазы во время старения митохондрии.

Как видите, полей для будущих исследований очень много. Я предполагаю стык физики и биологии, где физики будут пытаются объяснить почему такая структура более энергетически эффективна. Тем более публикации по квантовой биологии уже имеются.

Источник: https://vladimirfo.com/2017/06/%D0%BC%D0%B8%D1%82%D0%BE%D1%85%D0%BE%D0%BD%D0%B4%D1%80%D0%B8%D0%B8-%D1%81%D1%82%D1%80%D1%83%D0%BA%D1%82%D1%83%D1%80%D0%B0-%D0%B8-%D1%84%D1%83%D0%BD%D0%BA%D1%86%D0%B8%D0%B8-%D0%B1%D0%B5%D0%BB%D0%BA/

Строение и функции митохондрий. Сходства и различия с хлоропластом

Электронограмма митохондрии

Митохондрии — это микроскопические мембранные органоиды, которые обеспечивают клетку энергией. Поэтому их называют энергетическими станциями (аккумулятором) клеток.

Митохондрии отсутствуют в клетках простейших организмов, бактерий, энтамеб, которые живут без использования кислорода. Некоторые зеленые водоросли, трипаносомы содержат одну большую митохондрию, а клетки сердечной мышцы, мозга имеют от 100 до 1000 данных органелл.

Особенности строения

Митохондрии относятся к двухмембранным органеллам, имеют внешнюю и внутреннюю оболочки, межмембранное пространство между ними и матрикс.

Внешняя мембрана. Она гладкая, не имеет складок, отграничивает внутреннее содержимое от цитоплазмы. Ширина ее равна 7нм, в составе находятся липиды и белки. Важную роль выполняет порин — белок, образующий каналы во внешней мембране. Они обеспечивают ионный и молекулярный обмен.

Межмембранное пространство. Величина межмембранного пространства около 20нм. Вещество, заполняющее его по составу сходно с цитоплазмой, за исключением крупных молекул, которые могут сюда проникнуть только путем активного транспорта.

Внутренняя мембрана. Построена в основном из белка, только треть отводится на липидные вещества. Большое количество белков являются транспортными, так как внутренняя мембрана лишена свободно проходимых пор.

Она формирует много выростов – крист, которые выглядят, как приплюснутые гребни. Окисление органических соединений до CO2 в митохондриях происходит на мембранах крист. Этот процесс кислородзависимый и осуществляется под действием АТФ-синтетазы.

Высвобожденная энергия сохраняется в виде молекул АТФ и используется по мере необходимости.

Матрикс – внутренняя среда митохондрий, имеет зернистую однородную структуру. В электронном микроскопе можно увидеть гранулы и нити в клубках, которые свободно лежат между кристами.

В матриксе находится полуавтономная система синтеза белка – здесь расположены ДНК, все виды РНК, рибосомы.

Но все же большая часть белков поставляется с ядра, поэтому митохондрии называют полуавтономными органеллами.

Расположение в клетке и деление

Хондриом – это группа митохондрий, которые сосредоточены в одной клетке. Они по-разному располагаются в цитоплазме, что зависит от специализации клеток.

Размещение в цитоплазме также зависит от окружающих ее органелл и включений.  В клетках растений они занимают периферию, так как к оболочке митохондрии отодвигаются центральной вакуолью.

В клетках почечного эпителия мембрана образует выпячивания, между которыми находятся митохондрии.

В стволовых клетках, где энергия используется равномерно всеми органоидами, митохондрии размещены хаотично. В специализированных клетках они, в основном, сосредоточены в местах наибольшего потребления энергии.

К примеру, в поперечно-полосатой мускулатуре они расположены возле миофибрилл. В сперматозоидах они спирально охватывают ось жгутика, так как для приведения его в движение и перемещения сперматозоида нужно много энергии.

Простейшие, которые передвигаются при помощи ресничек, также содержат большое количество митохондрий у их основания.

Деление. Митохондрии способны к самостоятельному размножению, имея собственный геном. Органеллы делятся с помощью перетяжки или перегородок. Формирование новых митохондрий в разных клетках отличается периодичностью, например, в печеночной ткани они сменяются каждые 10 дней.

Функции в клетке

  1. Основная функция митохондрий – образование молекул АТФ.
  2. Депонирование ионов Кальция.
  3. Участие в обмене воды.
  4. Синтез предшественников стероидных гормонов.

Молекулярная биология – это наука, изучающая роль митохондрий в метаболизме. В них также идет превращение пирувата в ацетил-коэнзим А, бета-окисление жирных кислот.

Таблица: строение и функции митохондрий (кратко)
Структурные элементыСтроениеФункции
Наружная мембранаГладкая оболочка, построена из липидов и белковОтграничивает внутреннее содержимое от цитоплазмы
Межмембранное пространствоНаходятся ионы водорода, белки, микромолекулыСоздает протонный градиент
Внутренняя мембранаОбразует выпячивания – кристы, содержит белковые транспортные системыПеренос макромолекул, поддержание протонного градиента
МатриксМесто расположения ферментов цикла Кребса, ДНК, РНК, рибосомАэробное окисление с высвобождением энергии, превращение пирувата в ацетил-коэнзим А.
РибосомыОбъединённые две субъединицыСинтез белка

Сходство митохондрий и хлоропластов

Общие свойства для митохондрий и хлоропластов обусловлены, прежде всего, наличием двойной мембраны.

Признаки сходства также заключаются в способности самостоятельно синтезировать белок. Эти органеллы имеют свое ДНК, РНК, рибосомы.

И митохондрии и хлоропласты могут делиться с помощью перетяжки.

Объединяет их также возможность продуцировать энергию, митохондрии более специализированы в этой функции, но хлоропласты во время фотосинтезирующих процессов тоже образуют молекулы АТФ. Так, растительные клетки имеют меньше митохондрий, чем животные, потому что частично функции за них выполняют хлоропласты.

Опишем кратко сходства и различия:

  • Являются двомембранными органеллами;
  • внутренняя мембрана образует выпячивания: для митохондрий характерны кристы, для хлоропластов – тиллакоиды;
  • обладают собственным геномом;
  • способны синтезировать белки и энергию.

Различаются данные органоиды своими функциями: митохондрии предназначены для синтеза энергии, здесь осуществляется клеточное дыхание, хлоропласты нужны растительным клеткам для фотосинтеза.

Оцените, пожалуйста, статью. Мы старались:) (18 4,28 из 5)
Загрузка…

Источник: https://animals-world.ru/mitoxondrii-stroenie-i-funkcii/

Митохондрии

Электронограмма митохондрии

  • Что такое митохондрии и их роль
  • Происхождение митохондрии
  • Строение митохондрии
  • Функции митохондрии
  • Ферменты митохондрий
  • Митохондрии, видео
  • Еще в далеком XIX веке с интересом изучая посредством первых не совершенных еще тогда микроскопов, строение живой клетки, биологи заметили в ней некие продолговатые зигзагоподобные объекты, которые получили название «митохондрии». Сам термин «митохондрия» составлен из двух греческих слов: «митос» – нитка и «хондрос» – зернышко, крупинка.

    Что такое митохондрии и их роль

    Митохондрии представляют собой двумембранный органоид эукариотической клетки, основное задание которого – окисление органических соединений, синтез молекул АТФ, с последующим применением энергии, образованной после их распада. То есть по сути митохондрии это энергетическая база клеток, говоря образным языком, именно митохондрии являются своего рода станциями, которые вырабатывают необходимую для клеток энергию.

    Количество митохондрий в клетках может меняться от нескольких штук, до тысяч единиц. И больше их естественно именно в тех клетках, где интенсивно идут процессы синтеза молекул АТФ.

    Сами митохондрии также имеют разную форму и размеры, среди них встречаются округлые, вытянутые, спиральные и чашевидные представители. Чаще всего их форма округлая и вытянутая, с диаметром от одного микрометра и до 10 микрометров длинны.

    Примерно так выглядит митохондрия.

    Также митохондрии могут, как перемещаться по клетке (делают они это благодаря току цитоплазмы), так и неподвижно оставаться на месте. Перемещаются они всегда в те места, где наиболее требуется выработка энергии.

    Происхождение митохондрии

    Еще в начале прошлого ХХ века была сформирована так званая гипотеза симбиогенеза, согласно которой митохондрии произошли от аэробных бактерий, внедренных в другую прокариотическую клетку.

    Бактерии эти стали снабжать клетку молекулами АТФ взамен получая необходимые им питательные вещества.

    И в процессе эволюции они постепенно потеряли свою автономность, передав часть своей генетической информации в ядро клетки, превратившись в клеточную органеллу.

    Строение митохондрии

    Митохондрии состоят из:

    • двух мембран, одна из них внутренняя, другая внешняя,
    • межмембранного пространства,
    • матрикса – внутреннего содержимого митохондрии,
    • криста – это часть мембраны, которая выросла в матриксе,
    • белок синтезирующей системы: ДНК, рибосом, РНК,
    • других белков и их комплексов, среди которых большое число всевозможных ферментов,
    • других молекул

    Так выглядит строение митохондрии.

    Внешняя и внутренняя мембраны митохондрии имеют разные функции, и по этой причине различается их состав. Внешняя мембрана своим строением схожа с мембраной плазменной, которая окружает саму клетку и выполняет в основном защитную барьерную роль. Тем не менее, мелкие молекулы могут проникать через нее, а вот проникновение молекул покрупнее уже избирательно.

    На внутренней мембране митохондрии, в том числе на ее выростах – кристах, располагаются ферменты, образуя мультиферментативные системы. По химическому составу тут преобладают белки. Количество крист зависит от интенсивности синтезирующих процессов, к примеру, в митохондриях клеток мышц их очень много.

    У митохондрий, как впрочем, и у хлоропластов, имеется своя белоксинтезирующая система – ДНК, РНК и рибосомы. Генетический аппарат имеет вид кольцевой молекулы – нуклеотида, точь в точь как у бактерий. Часть необходимых белков митохондрии синтезируют сами, а часть получают извне, из цитоплазмы, поскольку эти белки кодируются ядерными генами.

    Функции митохондрии

    Как мы уже написали выше, основная функция митохондрий – снабжение клетки энергией, которая путем многочисленных ферментативных реакций извлекается из органических соединений. Некоторые подобные реакции идут с участием кислорода, а после других выделяется углекислый газ. И реакции эти происходят, как внутри самой митохондрии, то есть в ее матриксе, так и на кристах.

    Если сказать иначе, то роль митохондрии в клетке заключается в активном участии в «клеточном дыхании», к которому относится множество химических реакций окисления органических веществ, переносов протонов водорода с последующим выделением энергии и т. д.

    Ферменты митохондрий

    Ферменты транслоказы внутренней мембраны митохондрий осуществляют транспортировку АДФ в АТФ. На головках, что состоят из ферментов АТФазы идет синтез АТФ. АТФаза обеспечивает сопряжение фосфорилирования АДФ с реакциями дыхательной цепи. В матриксе находится большая часть ферментов цикла Кребса и окисления жирных кислот

    Митохондрии, видео

    И в завершение интересное образовательное видео о митохондриях.

    При написании статьи старался сделать ее максимально интересной, полезной и качественной. Буду благодарен за любую обратную связь и конструктивную критику в виде комментариев к статье. Также Ваше пожелание/вопрос/предложение можете написать на мою почту pavelchaika1983@gmail.com или в Фейсбук, с уважением автор.

    Эта статья доступна на английском языке – Mitochondria: Structure, Function and Role in the Cell.

    Источник: https://www.poznavayka.org/biologiya/mitohondrii/

    Cell Biology.ru

    Электронограмма митохондрии
    Митохондрии (от греч. mitos– нить, chondrion- зернышко) – органеллы эукариотических клеток, обладающие собственной ДНК и выполняющие функцию синтеза АTP. Размеры и форма митохондрий сильно варьирует у разных видов. Обычно ширина ~0,5 мкм, длина 7-60 мкм.

    Митохондрии подвижные, пластичные, постоянно изменяют форму, могут ветвиться, сливаться друг с другом, и расходится. Перемещение митохондрий связано с микротрубочками. В культуре клеток эндотелия сердца головастика ксенопуса наблюдали до 40 случаев слияния и деления митохондрий за 1 час.

    Митохондрии расположены около мест высокого потребления АТФ (между миофибриллами в сердечной мышце, вокруг жгутика сперматозоида). Число митохондрий зависит от потребности клетки в энергии, чем больше потребность, тем больше митохондрий в клетке и тем более они развиты. Сложная форма митохондрий затрудняет их микроскопическое исследование.

    На срезе одна извитая митохондрия может быть представленанесколькими сечениями (3-5), и только пространственная трехмерная реконструкция, построенная на изучении серийных срезов, может решить вопрос, имеем ли мы дело с 3-6 отдельными митохондриями или же с одной изогнутой или разветвленной.

    В некоторых клетках имеется одна сильно разветвленная митохондрия (одноклеточные зеленые водоросли Polytomella, Engiena, Chlorella). Длинные ветвящиеся митохондрии были описаны в клетках культуры ткани млекопитающих, в клетках многих растений как в нормальных, так и в анаэробных условиях.

    В последнее время стал широко применяться для изучения свойств митохондрий флуорохром родамин. Этот краситель обладает способностью люминисцировать в фиолетовом свете, если он связывается с мембранами активных митохондрий. При этом в люминисцентном микроскопе видна единая митохондриальнвя система – митохондриальный ретикулум.

    Печеночную клетку приходится около 200 митохондрий. Это составляет более 20% от общего объема цитоплазмы и около 30-35% от общегоколичества белка в клетке. Площадь поверхности всех митохондрий печеночной клетки в 4-5 раз больше поверхности ее плазматической мембраны. Больше всего митохондрий в ооцитах (около 300000) и у гигантской амебы Chaos chaos (до 500000). В клетках зеленых растений число митохондрий меньше, чем в клетках животных, так как часть их функций могут выполнять хлоропласты. В спермиях часто присутствуют гигантские митохондрии, спирально закрученные вокруг осевой части жгутика. Отсутствуют митохондрии у кишечных энтамеб, живущих в условиях анаэробиоза, и у некоторых других паразитических простейших. Обычно митохондрии скапливаются вблизи тех участков цитоплазмы, где возникает потребность в АТФ, образующейся в митохондриях. Так, в скелетных мышцах митохондрии находятся вблизи миофибрилл. В сперматозоидах митохондрии образуют спиральный футляр вокруг оси жгутика; вероятно, это связано с необходимостью использования АТФ для движения хвоста сперматозоида. Аналогичным образому простейших и в других клетках, снабженных ресничками, митохондрии локализуются непосредственно под клеточной мембраной у основания ресничек, для работы которых необходим АТФ. В аксонах нервных клеток митохондрии располагаются около синапсов, где происходит процесс передачи нервного импульса.

    Внешняя мембрана
    Внутренняя мембрана
    Матрикс м-на, матрикс, кристы. она имеет ровные контуры, не образует впячиваний или складок. На нее приходится около 7% от площади всех клеточных мембран.

    Ее толщина около 7 нм, она не бывает связана ни с какими другими мембранами цитоплазмы и замкнута сама на себя, так что представляет собой мембранный мешок. Наружнюю мембрану от внутренней отделяет межмембранное пространство шириной около 10-20 нм.

    Внутренняя мембрана (толщиной около 7 нм) ограничивает собственно внутреннее содержимое митохондрии,ее матрикс или митоплазму. Характерной чертой внутренней мембраны митохондрий является их способность образовывать многочисленные впячивания внутрь митохондрий. Такие впячивания чаще всего имеют вид плоских гребней, или крист.

    Расстояние между мембранами в кристе составляет около 10-20 нм. Часто кристы могут ветвиться или образовывать пальцевидные отростки, изгибаться и не иметь выраженной ориентации. У простейших, одноклеточных водорослей, в некоторых клетках высших растений и животных выросты внутренней мембраны имеют вид трубок (трубчатые кристы).

    Матрикс митохондрий имеет тонкозернистое гомогенное строение, в нем иногда выявляются тонкие собранные в клубок нити (около 2-3 нм) и гранулы около 15-20нм. Теперь стало известно, что нити матрикса митохондрий представляют собой молекулы ДНК в составе митохондриального нуклеоида, а мелкие гранулы – митохондриальные рибосомы.

    Функции митохондрий

    1. В митохондриях происходит синтез ATP (см. Окислительное фосфорилирование)pH межмембранного пространства ~4, pH матрикса ~8 | содержание белков в м: 67% – матрикс, 21% -наруж м-на, 6% – внутр м-на и 6% – в межм-ном пр-ве

    Хандриома – единая система митохондрий

    наружная м-на: порины-поры позволяют проходить до 5 kD | внутренняя м-на: кардиолипин-делает непроницаемой м-ну для ионов | межм-ное пр-во: группы ферментов фосфорилируют нуклеотиды и сахара нуклеотидов внутренняя м-на: матрикс: метаболические ферменты – окисление липидов, окисление углеводов, цикла трикарбоновых к-т, цикла Кребса Происхождение от бактерий: амеба Pelomyxa palustris единств из эукариот не содержит м., живет в симбиозе с аэробными бактериями | собственная ДНК | схожие с бактериями оx процессы

    Деление миохондрий

    реплицируетсяв интерфазе | репликация не связана с S-фазой | во время кл цикла митох один раз делятся надвое, образуя перетяжку, перетяжка сначала на внутр м-не | ~16,5 kb | кольцевая, кодирует 2 рРНК 22 тРНК и 13 белков | транспорт белков: сигнальный пептид | амфифильный завиток | митохондриальный распознающий рецептор | Окислительное фосфорилирование Цепь переноса электронов АТР-синтаза

    в кл печени, м живут ~20 дней деление митохондрий путем образования перетяжки

    16569пн=13белков,22тРНК,2pРНК | гладкая внешняя м-на (порины – проницаемость белков до 10 кДа) складчатая внутренняя (кристы) м-на (75% -белков: транспортные белки-переносчики, ф-ты, компаненты дыхат. цепи и АТФ-синтаза, кардиолипин) матрикс (обогащен ф-тами цитратного цикла) межм-ное пр-во

    Источник: http://cellbiol.ru/book/kletka/mitokhondrii

    Митохондрия

    Электронограмма митохондрии

    Митохондрия – это двумембранный органоид эукариотической клетки, основная функция которого синтез АТФ – источника энергии для жизнедеятельности клетки.

    Количество митохондрий в клетках не постоянно, в среднем от нескольких единиц до нескольких тысяч. Там, где процессы синтеза идут интенсивно, их больше.

    Также варьирует размер митохондрий и их форма (округлые, вытянутые, спиральные, чашевидные и др.). Чаще имеют округлую вытянутую форму, диаметром до 1 микрометра и длиной до 10 мкм.

    Могут перемещаться в клетке с током цитоплазмы или оставаться в одном положении. Перемещаются к местам, где больше всего требуется выработка энергии.

    Согласно гипотезе симбиогенеза митохондрии произошли от аэробных бактерий, внедрившихся в другую прокариотическую клетку. Эти бактерии начали снабжать клетку дополнительным количеством молекул АТФ, а получать от нее питательные вещества. В процессе эволюции они потеряли автономность, передав часть своих генов в ядро и став таким образом клеточной органеллой.

    В клетках новые митохондрии появляются в основном путем деления ранее существующих, т. е. они не синтезируются заново, что напоминает процесс размножения и говорит в пользу симбиогенеза.

    Строение и функции митохондрии

    Митохондрия состоит из

    • двух мембран — внешней и внутренней,
    • межмембранного пространства,
    • внутреннего содержимого — матрикса,
    • крист, представляющих собой выросты в матрикс внутренней мембраны,
    • собственной белок-синтезирующей системы: ДНК, рибосом, РНК,
    • белков и их комплексов, в том числе большого количества ферментов и коферментов,
    • других молекул и гранул различных веществ, находящихся в матриксе.

    Внешняя и внутренняя мембраны выполняют разные функции, поэтому различается их химический состав. Расстояние между мембранами составляет до 10 нм.

    Внешняя мембрана митохондрий по строению схожа с плазмалеммой, окружающей клетку, и выполняет в основном барьерную функцию, отграничивая содержимое органоида от цитоплазмы. Через нее проникают мелкие молекулы, транспорт крупных избирателен.

    В некоторых местах внешняя мембрана соединена с ЭПС, каналы которой открываются в митохондрию.

    На внутренней мембране, в основном ее выростах — кристах, располагаются ферменты, образуя мультиферментативные системы. Поэтому по химическому составу здесь преобладают белки, а не липиды. Количество крист варьирует в зависимости от интенсивности процессов. Так в митохондриях мышц их очень много.

    В некоторых местах внешняя и внутренняя мембрана соединяются между собой.

    У митохондрий, также как у хлоропластов, есть своя белоксинтезирующая система — ДНК, РНК и рибосомы. Генетический аппарат представляет собой кольцевую молекулу – нуклеоид, как у бактерий.

    Рибосомы митохондрий растений схожи с бактериальными, у животных митохондриальные рибосомы мельче не только цитоплазматических, но и бактериальных.

    Часть необходимых белков митохондрии синтезируют сами, другую часть получают из цитоплазмы, так как эти белки кодируются ядерными генами.

    функция митохондрий — снабжать клетку энергией, которая путем многочисленных ферментативных реакций извлекается из органических соединений и запасается в АТФ. Часть реакций идет с участием кислорода, в других выделяется углекислый газ. Реакции идут как в матриксе (цикл Кребса), так и на кристах (окислительное фосфорилирование).

    Следует иметь в виду, что в клетках АТФ синтезируется не только в митохондриях, но и в цитоплазме в процессе гликолиза. Однако эффективность этих реакций невысока. Особенность функции митохондрий в том, что в них протекают реакции не только бескислородного окисления, но и кислородный этап энергетического обмена.

    Другими словами, функция митохондрий – активное участие в клеточном дыхании, к которому относят множество реакций окисления органических веществ, переноса протонов водорода и электронов, идущих с выделением энергии, которая аккумулируется в АТФ.

    Заметки патологоанатома: клеточные структуры (продолжение) митохондрии..

    Электронограмма митохондрии
    andreas_zarus   Митохондрии – органеллы, которые предположительно произошли в результате симбиоза неких древних бактерий и предков современных клеток, доказательством этому является своеобразное полуавтономное существование этих органелл, митохондрии содержат в себе свой собственный генетический материал, способны сами по себе делиться и сами синтезировать свои белки.

    В результате мутаций в митохондриальных генах развиваются дефектные белки с развитием заболеваний с зубодробительными названиями, которые объединены в группу митохондриальных болезней, суть которых прямо проистекает из нарушения функций митохондрий, а функция у митохондрий – обеспечение клетки энергией в доступной для нее форме то есть в форме высокоэнергетических молекул аденозинтрифосфата, синтез которых происходит на митохондриальных мембранах.

    Рис 1.“вскрытая” митохондрия, видны две мембраны: гладкая наружная и внутренняя, образующая многочисленные складки в толще внутренней мембраны изображены белки дыхательной цепи, которые принимают участие в синтезе аденозинтрифосфата, а также собственно фермент (тоже белок) синтезирующий аденозинтрифосфат АТФ синтетаза – синенький.

       Аденозинтрифосфат или АТФ это универсальная энергетическая молекула, которая запасает энергию в виде химических связей, при разрыве которых высвобождается энергия и делает возможной в клетке работу, связанную с транспортом и синтезом чего бы то ни было.Рис 2 Молекула аденозинтрифосфата или АТФ три оранжевых остатка фосфорной кислоты в “хвосте” этой молекулы и образуют те самые высокоэнергетические связи, энергия высвобождается при их отщеплении.   Если синтез этих молекул снижается, то в органах и тканях, которые более всего зависят от их синтеза (в первую очередь к ним относятся нервная и мышечная ткани (особенно сердечная мышца), потребляющие таких энергетических молекул много, ОЧЕНЬ МНОГО), развивается клиническая симптоматика, которая, в общем, описывается словосочетанием – непереносимость физических нагрузок. АТФ ввиду своей нестойкости, не могут быть запасены клеткой впрок, таким образом, скорость производства примерно равна скорости их расхода и для того чтобы покрыть энергетические потребности одной единственной клетки требуется около 10 миллионов молекул АТФ в секунду (sic!).
    Рис.3 Здесь представлены поперечный гистологический срезы склелетной мышцы. О количестве митохондрий в тканях мы можем судить используя специальные гистохимические методы окраски. Здесь при помощи красящего вещества избирательно соединяющегося с белками входящими в состав митохондриальной мембраны мы можем визуализировать митохондрии, здесь каждая митохондрия прокрашивается в виде иссиня черной точки. На препарате заметно, что мышечные волокна неоднородны, часть из них обладает большим количеством митохондрий чем другая, это связано с их физиологическими особеностями, но об этом в другой раз. (автор фото William McDonald, M.D.)с missinglink.ucsf.edu)   Морфологически, митохондрии построены из двух мембран, строение которых очень похоже на строение клеточной мембраны. Наружная мемебрана гладкая, а внутренняя – образует многочисленные складки – кристы, которые в разы увеличивают ее рабочую поверхность. В этой внутренней мембране и встроены белки, которые обеспечивают процессы клеточного дыхания, с синтезом молекул аденозинтрифосфата.
    Рис 4Снимок митохондрии, полученный при помощи просвечивающего электронного микроскопа. Здесь митохондрия получается как бы разрезанной пополам (Авторы: Keith Porter, Mary Bonneville (University of Maryland Baltimore County, Baltimore, MD) cellimagelibrary.org)С генетикой митохондрий вообще все осень интересно, если в ядре клетки содержится генетический материал, наследуемый как от матери, так и от отца, то митохондриальный генетический материал наследуется только от матери, соответственно, митохондриальные болезни также наследуются только по материнской линии.andreas_zarus   Атлас опухолей поджелудочной железы, чумовая штука, причем абсолютно бесплатная. Идейный организатор —  весьма известный в патологоанатомических кругах доктор Ральф Хрубан (Ralph H. Hruban) профессор патологической анатомии и онкологии в Университете Джона Хопкинса (The Johns Hopkins University School of Medicine), а также автор и соавтор  целой кучи великолепных книжек по гастроинтестинальной патологии.   Помимо собственно атласа, сделан потрясающей красоты, логичности и наглядности алгоритм по изучению или преподаванию или даже патологоанатомической диагностике опухолей поджелудочной железы. Основанный на дихотомическом принятии решений в соответствии с морфологией опухоли. Например, сперва делим все опухоли на солидные и кистозные…   Для примера пойдем по пути кистозной опухоли, жамкаем дальше. Следующий шаг – какая выстилка у опухоли истинная или дегенеративная…   Допустим что истинная (шаг с особенностями строму я пропущу), а потом наслаждаемся конкретными микрофотографиями со случаями с соответствующими характеристиками.   Микрофотографии в атласе прекрасны…Есть и макрофотографии и много их…Конечно все они снабжены краткой аннотацией…В качестве бонуса, можно собирать из представленных фотографий собственный альбом и использовать их для создания флеш карт для запоминания. Приложение помимо всех прочих достоинств дополнено тестом и видео по вырезке комплекса органов после операции Виппла.Огромное спасибо авторам этого пособия, есть еще другое по цитологии, но о нем позже.Кстати, поблагодарить Доктора Хрубана, или высказать критические замечания, можно по этому адресу:  rhruban@jhmi.edu.

    Ralph H. Hruban, M.D. Department of Pathology. The Sol Goldman Pancreatic Cancer Research Center

    Bona Kim, M.A. Department of Art as Applied to Medicine

    Corinne Sandone, M.A. Department of Art as Applied to Medicine

    Toby C. Cornish, M.D., Ph.D. Department of Pathology. The Sol Goldman Pancreatic Cancer Research Center

    Photography: Norman Barker, M.A., M.S.

    Application authoring: Madisonfilm, Inc.

    Additional consultation: Dr. Robert Miller, Kyu Lee

    Page 3

    ?

    |

    andreas_zarus… судебно-медицинского форума Forens. Стилистика, орфография и пунктуация авторов цинично сохранены (вы можете в этом не сомневаться). Дню знаний посвящается.

    Что происходит с клетками млекопитающих при остановке сердца ?

    twrpx
    “Что происходит с клеткой нормальной здоровой ткани (крысы, человека) при остановке сердечной деятельности и прекращении кровообращения? Там происходит апоптоз, некроз или что то третье ?
    Спасибо”
    – Гангрена

    Реферат: Особенности судебно-медицинского исследования трупов

    лаборант87
    “Особенности судебно-медицинского исследования трупов при различных видах смерти”
    что именно можно написать по данной теме?”
    – ну, можно написать монографию, это как минимум.

    Выбор специальности. Подскажите пожалуйста

    Мариночка
    “Добрый день. Я учусь на 6 курсе мед.института. Работаю в терапии медсестрой. Стою перед выбором какую специальность выбрать в дальнейшем. Если я пойду в терапию и спустя время пойму, что это все-таки не для меня, могу я уйти потом в судебную медицину? Или это будет неосуществимо? Заранее спасибо”.– ужасно раздражает, когда патологическую анатомию и судебную медицину начинают рассматривать как специальности для неучей, ну или, в крайнем случае, неудачников. В любом случае я считаю, что шестой курс это уже очень, очень поздно для подобных мыслей.

    Можно ли эксперту забрать вошь с трупа :)

    Гость
    “А может эксперт себе что нибудь с трупа взять?”– что еще с него взять кроме анализов.

    Про запахи в морге

    lisiza
    “Интересно наблюдать и сравнивать, как в разных фильмах показаны личности судебных медиков. спектр образов широк. от хладнокровных и распущенных в “Патологии” до шаржированного доктора Гробовски в “Очень русском детективе”. конечно, всё зависит от жанра, качества и идеи фильма. но откуда-то ведь беруться эти образы их поведение, привычки, действия.
    Возьмем, к примеру, ту же “Патологию”. Я понимаю, что там всё очень утрировано. Вот идет молодой доктор по секционке, где другие его коллеги производят вскрытия и уплетает с аппетитом сэндвич. так бывает? кто нибудь кушает так на самом деле? были случаи? я не для того спрашиваю, чтобы потом поохать и поахать. просто интересно, может ли человек принимать пищу в такой специфической обстановке. а где вы вообще можете покушать у себя на работе. есть столовая? может быть вопрос глупый, но должны же вы где-то питаться. на одном чае -кофе далеко не “уедешь”. а санитары где кушают?”
    – Один из стандартных вопросов, обычно задается в числе самых первых, причем каждый считает своим долгом рассказать историю про то, как патологоанатомы «едят с трупов», «едят на трупах», «едят рядом с трупами» и т.п. (подставить собственный вариант). И, да, блядь как же бесит слово кушать в принципе, а в подобном контексте особенно.

    Необходимая литература

    s.lana
    “Помогите пожайлуста, а то столько книг (авторов) есть ни о чём, хотелось бы именно нужных авторов и лучше по нозоологиям знать (точнее например огнестрел-…..). Я не думаю, что один человек может быть во всех направлениях супер. Не хочу читать глупые книги, чтобы в последующем, ссылаясь на них идиотом выглядеть”.– может быть не совсем корректно сформулировано, но, как мне кажется, отчетливо прослеживается желание «не делать вообще ничего».

    Какими путями можно пойти в судебные медики

    ToSS
    “Доброго времени суток господа.На данный момент я студент 5 курса педфака БГМУ (Минск).Учусь я средне , на хирпоток я не попадаю(не блатной).Хотелось бы узнать , какими путями можно пойти в СМ после универа в РБ.Есть ли в РБ военная СМ , если да ,то как можно туда попасть(чем она отлична от гражданки).На какие дисциплины в универе особо уделить внимание(и не только медицинские).Какие + и – в профессии СМэксперта , как для новичка.Как общесво относится к данной профессии , как обычно относятся к этому любимая девушка ,друзья ,близкие.

    Спасибо всем,кто откликнется на мою просьбу”.

    Не скажешь, какими путямиПриходит к нам в душу печаль,Лицо умывая слезами,Туманом окутавши даль.Не скажешь, какою дорогойПриходит к нам в сердце тоска,Когда к безнадежности строгойКостлявая движет рука.PS. чего-то я злобный какой-то сегодня. Всем чудесного вечера.

    Источник: https://andreas-zarus.livejournal.com/57749.html

    Все о медицине
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: