Ядерная клетка это

Содержание
  1. Что такое ядро в биологии? Строение и функции ядра
  2. Что такое ядро в биологии. Определение
  3. Состав ядра
  4. Форма ядер
  5. Количество ядер в одной клетке может быть разным
  6. Особенности ядерного аппарата у простейших
  7. Заболевания
  8. Заключение
  9. Урок 6: Строение клетки
  10. Основные части и органоиды клетки, их строение и функции
  11. Эукариотические и прокариотические клетки
  12. Сходства и различия в строении клеток животных, растений и грибов
  13. Ядро клетки
  14. Хроматин
  15. Ядрышко
  16. Функции ядра
  17. Клеточное ядро как важнейший компонент клетки #47
  18. Клеточное ядро
  19. Химический состав ядра
  20. Ядерная оболочка
  21. Ядерный сок
  22. Метафазная хромосома
  23. Кариотип
  24. Ядрышки
  25. Эукариотические клетки
  26. Прокариотические клетки
  27. Отличие про- от эукариотических клеток
  28. Отличие животных от растительных клеток
  29. Особенности строения и функции ядра клетки
  30. Особенности строения ядра
  31. Строение хромосом
  32. Строение ядрышка
  33. Функции ядра в клетке
  34. Роль и значение ядра

Что такое ядро в биологии? Строение и функции ядра

Ядерная клетка это

В каждой живой клетке протекает множество биохимических реакций и процессов. Чтобы контролировать их, а также регулировать многие жизненно важные факторы, необходима специальная структура. Что такое ядро в биологии? Благодаря чему оно эффективно справляется с поставленной задачей?

Что такое ядро в биологии. Определение

Ядро – необходимая структура любой клетки организма. Что такое ядро? В биологии это важнейший компонент каждого организма. Ядро можно обнаружить и у одноклеточных простейших, и у высокоорганизованных представителей эукариотического мира. функция этой структуры – хранение и передача генетической информации, которая здесь же и содержится.

После оплодотворения яйцеклетки сперматозоидом происходит слияние двух гаплоидных ядер. После слияния половых клеток образуется зигота, ядро которой уже несет диплоидный набор хромосом. Это значит, что кариотип (генетическая информация ядра) уже содержит копии генов и матери, и отца.

Диплоидное ядро присутствует практически во всех эукариотических клетках. Гаплоидным ядром обладают не только гаметы, но и многие представители простейших организмов.

Сюда относятся некоторые одноклеточные паразиты, водоросли, свободноживущие формы одноклеточных.

Стоит отметить, что большинство из перечисленных представителей имеют гаплоидное ядро лишь на определенной стадии жизненного цикла.

Состав ядра

Какова характеристика ядра? Биология тщательно изучает состав ядерного аппарата, т. к. это может дать толчок в развитии генетики, селекции и молекулярной биологии.

Ядро – это двумембранная структура. Мембраны являются продолжением эндоплазматической сети, что необходимо для транспорта образованных веществ из клетки. Содержимое ядра называется нуклеоплазма.

Хроматин – основное вещество нуклеоплазмы. Состав хроматина разнообразен: здесь находятся в первую очередь нуклеиновые кислоты (ДНК и РНК), а также белки и многие ионы металлов. ДНК в нуклеоплазме расположена упорядочено в виде хромосом. Именно хромосомы при делении удваиваются, после чего каждый их наборов переходит в дочерние клетки.

РНК в нуклеоплазме чаще всего встречается двух типов: мРНК и рРНК. Матричная РНК образуется в процессе транскрипции – считывания информации с ДНК. Молекула такой рибонуклеиновой кислоты позже покидает ядро и в дальнейшем служит матрицей для образования новых белков.

Рибосомальная РНК образуется в специальных структурах под названием ядрышки. Ядрышко построено из концевых участков хромосом, образованных вторичными перетяжками. Эта структура может быть видна в световой микроскоп в виде уплотненного пятнышка на ядре. Рибосомальные РНК, которые синтезируются здесь, также поступают в цитоплазму и далее вместе с белками образуют рибосомы.

Непосредственное влияние на функции оказывает состав ядра. Биология как наука изучает свойства хроматина для лучшего пониманию процессов транскрипции и деления клетки.

Первой и самой важной функцией ядра является хранение и передача наследственной информации. Ядро – уникальная структура клетки, т. к. в нем содержится большая часть генов человека.

Кариотип может быть гаплоидный, диплоидный, триплоидный и так далее. Плоидность яда зависит от функции самой клетки: гаметы гаплоидные, а соматические клетки диплоидные.

Клетки эндосперма покрытосеменных растений триплоидные, и, наконец, многие сорта посевных культур имеют полиплоидный набор хромосом.

Передача наследственной информации в цитоплазму из ядра происходит при образовании мРНК. В процессе транскрипции нужные гены кариотипа считываются, и в итоге синтезируются молекулы матричной или информационной РНК.

Также наследственность проявляется при делении клетки митозом, мейозом или амитозом. В каждом из случаев ядро выполняет свою определенную функцию.

Например, в профазе митоза разрушается оболочка ядра и сильно компактизированные хромосомы попадают в цитоплазму. Однако в мейозе перед разрушением мембраны в ядре происходит кроссинговер хромосом.

А в амитозе ядро вовсе разрушается и вносит небольшой вклад в процессе деления.

Кроме того, ядро косвенно участвует в транспорте веществ из клетки из-за непосредственной связи мембраны с ЭПС. Вот что такое ядро в биологии.

Форма ядер

Ядро, его строение и функции могут зависеть от формы мембраны. Ядерный аппарат может быть округлым, вытянутым, в виде лопастей и т. д. Часто форма ядра специфична для отдельных тканей и клеток. Одноклеточные организмы различаются по типу питания, жизненного цикла, а вместе с тем различаются и формы мембраны ядер.

Разнообразие в форме и размере ядра можно проследить на примере лейкоцитов.

  • Ядро нейтрофилов может быть сегментированным и не сегментированным. В первом случае говорят о подковообразном ядре, и такая форма характерна для молодых клеток. Сегментированное ядро – это результат образования нескольких перегородок в мембране, в результате чего образуется несколько частей, связанных между собой.
  • У эозинофилов ядро имеет характерную гантелевидную форму. В этом случае ядерный аппарат состоит из двух сегментов, связанных перегородкой.
  • Почти весь объем лимфоцитов занят огромным ядром. Лишь небольшая часть цитоплазмы остается по периферии клетки.
  • В железистых клетках насекомых ядро может иметь разветвленное строение.

Количество ядер в одной клетке может быть разным

Не всегда в клетке организма присутствует только одно ядро. Порой необходимо присутствие двух или более ядерных аппаратов для осуществления нескольких функций одновременно. И наоборот, некоторые клетки могут вовсе обходиться без ядра. Вот некоторые примеры необычных клеток, в которых ядер больше одного или оно вообще отсутствует.

1. Эритроциты и тромбоциты. Эти форменные элементы крови транспортируют гемоглобин и фибриноген соответственно. Чтобы одна клетка смогла вместить максимальное количество вещества, она утратила свое ядро.

Характерна такая особенность не для всех представителей животного мира: у лягушек в крови находятся огромные по размерам эритроциты с ярко выраженным ядром.

Это показывает примитивность данного класса в сравнении с более развитыми таксонами.

2. Гепатоциты печени. Эти клетки содержат в себе два ядра. Одно из них регулирует очистку крови от токсинов, а другое отвечает за образование гемма, который в последующем войдет в состав гемоглобина крови.

3. Миоциты поперечно-полосатой скелетной ткани. Мышечные клетки многоядерные. Это связано с тем, что в них активно проходит синтез и распад АТФ, а также сборка белков.

Особенности ядерного аппарата у простейших

Для примера рассмотрим два вида простейших: инфузории и амебы.

1. Инфузория-туфелька. Этот представитель одноклеточных организмов имеет два ядра: вегетативное и генеративное. Т. к. они отличаются как по функциям, так и по размерам, такая особенность получила название ядерного дуализма.

Вегетативное ядро отвечает за повседневную жизнедеятельность клетки. Оно регулирует процессы ее метаболизма. Генеративное ядро участвует в клеточном делении и в конъюгации – половом процессе, при котором происходит обмен генетической информацией с особями того же вида.

2. Амебы. Яркие представители – дизентерийная и кишечная амебы. Первая относится к агрессивным паразитам человека, а вторая – обычный симбионт, который живет в кишечнике и не причиняет никакого вреда. Т. к.

дизентерийная амеба паразитирует тоже в кишечнике, важно отличать эти два вида между собой.

Для этого используют особенность ядерного аппарата: у дизентерийной амебы может быть до 4 ядер, а у кишечной амебы от 0 до 8.

Заболевания

Многие генетические заболевания связаны с нарушениями в наборе хромосом. Вот список наиболее известных отклонений в генетическом аппарате ядра:

  • синдром Дауна;
  • сиддром Патау;
  • синдром Эдвардса;
  • синдром Клайнфелтера;
  • синдром Шерешевского-Тернера.

Список можно продолжать, и каждая из болезней отличается порядковым номером пары хромосом. Также подобные заболевания часто затрагивают половые X и Y хромосомы.

Заключение

Ядро играет важную роль в процессе жизнедеятельности клетки. Оно регулирует биохимические процессы, является хранилищем наследственной информации. Транспорт веществ из клетки, синтез белков также связаны с функционированием этой центральной структуры клетки. Вот что такое ядро в биологии.

Источник: https://FB.ru/article/230391/chto-takoe-yadro-v-biologii-stroenie-i-funktsii-yadra

Урок 6: Строение клетки

Ядерная клетка это

План урока:

Основные части и органоиды клетки, их строение и функции

Эукариотические и прокариотические клетки

Сходства и различия в строении клеток животных, растений и грибов

Основные части и органоиды клетки, их строение и функции

Как правило, клетки обладают микроскопическими размерами. Однако известны и очень крупные клетки, видимые невооруженным глазом. Величина клеток зависит от выполняемых ими функций. Так, яйцеклетки благодаря накоплению в них питательных веществ достигают больших размеров.

Растительные организмы имеют крупные размеры клеток у плодов, так как в них заключены вакуоли с клеточным соком. Они могут достигать 500 мкм. Большинство растительных клеток имеет размер 10-100 мкм.

Несмотря на все разнообразие клеток, в их строении можно выделить общие моменты.

Каждая клетка покрыта плазматической, или клеточной мембраной, которая отделяет внутреннее содержимое от окружающей среды. Клеточная мембрана представляет собой тонкую плотную пленку, обволакивающую всю клетку. Ее структуру составляют несколько слоев.

Внутренний слой состоит из двух рядов липидов, молекулы которых расположены гидрофобными концами вглубь мембраны, а гидрофильные концы обращены к внешней водной среде. В отдельных местах клеточная мембрана пронизана белковыми молекулами, некоторые из которых служат рецепторами, а другие обеспечивают транспорт веществ.

Познакомимся со строением клеточной мембраны на рисунке.

Клеточная мембрана выполняет ряд важных функций:

  1. Разграничительная – ограничивает содержимое клетки от окружающей микросреды. Соответственно, обеспечивается сохранение различий между внутренними частями клетки и внешней средой.
  2. Рецепторная – в мембрану встроены белки, являющиеся рецепторами. Они обеспечивают восприятие различных воздействий на поверхность клетки.
  3. Транспортная – регулирование обмена различными веществами между клеткой и окружающей средой. Причем клеточная мембрана обладает полупроницаемостью, что обеспечивает избирательное поступление молекул и ионов.

Внутренним содержимым клетки является цитоплазма. Она представляет собой бесцветную, прозрачную жидкость, в которой располагаются все части клетки. Клеточная цитоплазма неоднородна, состоит она из гиалоплазмы и цитоскелета. Подробнее познакомимся на рисунке.  

Помимо клеточной мембраны и цитоплазмы важной составной частью любой эукариотической клетки является ядро.

Формы и размеры этой структуры очень изменчивы и зависят от вида организма, а также от типа и функционального состояния клетки. Оно может быть шаровидным, линзовидным, веретеновидным и многолопастным.

Общий план строения ядра одинаков у всех клеток.

Ядро отгорожено от цитоплазмы двойной мембраной или ядерной оболочкой. Все слои мембраны пронизаны многочисленными порами, через которые производится обмен веществ.

Содержимое ядра клетки получило название кариоплазма или ядерный сок. Это гелеобразное вещество заполняет пространство между структурами ядра и осуществляет связь между ними.

Внутри ядра находится ядрышко, представляющее округлую структуру. В клетке их может содержаться от 1 до 10, а например, у дрожжей, их нет совсем. В состав ядрышек входят белки, РНК и ДНК. Во время деления ядрышки разрушаются.

Помимо ядрышек в кариоплазме есть хроматин – комплекс ДНК и белка. Из него в процессе деления клетки формируются хромосомы.

Установлено, что каждый вид организмов имеет конкретное и постоянное количество хромосом в ядре клетки.

Набор хромосом, содержащийся в клетках, называется кариотипом.

В ядрах клетках тела, или соматических, содержится двойной набор хромосом. Такой кариотип имеет две одинаковые хромосомы и характерен для человека.

Ядра половых клеток имеют одинарный кариотип, то есть все хромосомы разные, нельзя встретить двух одинаковых.

Как мы уже убедились, ядро клетки имеет сложное строение. Какие же функции оно выполняет? Ядро является информационной системой клетки, местом хранения и воспроизводства наследственного материала. Оно служит центром управления обменом веществ клетки. Удаление этой структуры приводит к гибели клетки.

В цитоплазме расположены и другие составляющие клетки, получившие название органоиды.

Их принято делить на две группы, познакомимся с ними на схеме.

Рассмотрим строение и функции основных органоидов клетки.

  1. Рибосомы расположены в цитоплазме клетке, а также есть на поверхности эндоплазматической сети. Данные структуры являются мелкими телами сферической формы, состав которых образован белком, а также РНК.

Рибосомы часто соединены по 5-70 штук, представляющих полисомы. Основной функцией рибосом считается синтез белка.

  1. Клеточный центр представляет собой органоид клетки, состоящий из одной или двух мелких гранул – центриолей. Каждая центриоль – это цилиндрическое тельце, стенки которой состоят из параллельно расположенных трубочек. Основная функция клеточного центра – участие в делении клетки. В данном процессе центриоли расходятся в противоположные стороны и формируют полюса делящейся клетки.

Органоиды движения имеются у достаточного числа клеток. Такие органоиды движения как жгутики и реснички являются подвижными отростками цитоплазмы. Предназначены они для передвижения, а также для транспорта веществ. В состав этих структур входят микротрубочки. Внутри органоидов движения микротрубочки бьются друг о друга, тем самым обеспечивается перемещение клетки.

Клеточные включения являются непостоянными компонентами клетки в виде скопления каких-либо веществ. По исполняемым функциям можно выделить несколько видов клеточных включений. Познакомимся на рисунке.

  1. Мембранные органоиды
  2. Эндоплазматическая сеть считается системой связанных между собой полостей и канальцев, пронизывающих всю цитоплазму в клетке. Стенки каналов и полостей образованы простыми мембранами. По строению они различаются, поэтому выделяют два типа эндоплазматической сети: шероховатую и гладкую.

Шероховатая ЭПС представлена канальцами, на внешней поверхности которых располагаются рибосомы. Вних протекает синтез белка. На поверхности гладкой ЭПС находятся ферменты, обеспечивающие синтез жиров и углеводов.

Основной функцией эндоплазматической сети считается транспорт веществ, а также участие во внутриклеточном обмене. Немаловажной ролью считается синтез некоторых соединений, которые осуществляются структурами, расположенными на поверхности ЭПС.            

  1. Комплекс Гольджи сооружен из мембран сложенных друг на друга. В его состав входит система трубочек с пузырьками на концах. В клетке комплекс Гольджи расположен возле ядра, либо рассеян по всей цитоплазме.

В комплексе Гольджи происходит накопление, преобразование веществ, их накопление в пузырьках и выведение за пределы клетки, а также важной функцией считается формирование лизосом.

  1. Шаровидные образования в клетке, содержащие ферменты, получили название лизосомы. Соответственно, функцией лизосом считается расщепление веществ, бактерий, вирусов, а также отмерших органоидов.
  1. Митохондрии бывают в форме палочек, зерен, гранул или нитей. Численность их в клетке может составлять 50-500. Строение митохондрии изучено электронным микроскопом. Рассмотрим его на рисунке.

Функцией митохондрий является окисление соединений с освобождением энергии. Эти органоиды считаются энергетическими центрами, в которых образуется АТФ.

Особенностью митохондрий считается их автономия, то есть они способны самостоятельно размножаться. Митохондрии обладают собственной ДНК, хотя она и отличается по составу от ДНК ядра.

  1. В клетках растений находятся специальные органоиды – пластиды. Они разнообразны по форме и размерам, но чаще всего представляют собой овальные тельца.

Различают три вида клеточных пластид в зависимости от окраски.

Рассмотрим строение пластид на примере хлоропластов. Сверху эти органоиды покрыты оболочкой, состоящей из наружной и внутренней мембраны.

Пластиды, так же как ядро и митохондрии, имеют собственный генетический аппарат, под контролем которого происходит их размножение.

  1. Еще одними органоидами клетки считаются крупные пузырьки, заполненные клеточным соком – вакуоли. Образуются они из пузырьков аппарата Гольджи или расширений ЭПС. Характерны они по большей части для растений и выполняют функцию хранения питательных веществ, которые используются, например, при прорастании семян.

В животной клетке эти органоиды отсутствуют, исключение простейшие. У этой группы существ можно отметить пищеварительные и сократительные вакуоли. Первые способствуют перевариванию веществ с помощью ферментов, расположенных в них. Сократительные вакуоли обеспечивают выведение продуктов распада.

Эукариотические и прокариотические клетки

Все известные живые организмы подразделяются на две группы. Познакомимся с ними на схеме.

Клетка прокариот имеет довольно простое строение.В прокариотической клетке не имеется истинного ядра, ядрышек и хромосом. Наследственный материал представлен одной нитью ДНК соединенной с белками. Данная структура получила название нуклеоид и является прототипом ядра у прокариотической клетки.

В строении структур прокариот можно выделить ряд особенностей:

  1. Имеют жесткую клеточную стенку, а иногда и слизистую капсулу;
  2. В прокариотической клетке нет внутренней мембраны, кроме впячивания оболочки. Здесь расположены ферменты принимающие участие в обмене веществ у прокариот;
  3. Отсутствуют мембранные органоиды – митохондрии, ЭПС, хлоропласты, лизосомы, комплекс Гольджи, вакуоли.
  4. Прокариотические клетки имеют лишь рибосомы, причем очень мелкие.

Строение прокариот приспособлено для выполнения элементарных процессов жизнедеятельности: обмен веществ, размножение и другие.

Особенностью этих организмов считается их существование в бескислородной среде, то есть они являются анаэробами. Получение энергии для процессов жизнедеятельности происходит при расщеплении других соединений. К примеру, некоторые бактерии анаэробы способны усваивать азот из воздуха.

Однако не все прокариоты считаются анаэробами, среди них можно выделить и аэробов. Эти организмы нуждаются в кислороде для своей жизнедеятельности.Аэробы используют кислород для клеточного дыхания и окисления веществ. Примером могут быть бациллы.

Для многих прокариот характерен процесс спорообразования. Познакомимся с основными стадиями образования спор на рисунке.

Споры обеспечивают прокариотам возможность переносить неблагоприятные условия.

Еще одним процессом, позволившим прокариотам сохраниться с древнейших времен, считается способность к очень быстрому размножению.

Основным способом размножения прокариот является деление клетки надвое, иногда встречается почкование и половой процесс – конъюгация.

Эукариотические клетки имеют более сложное строение. Наследственная информация сконцентрирована в хромосомах, которые представлены нитями ДНК и белковых молекул. Все это находится в оформленном ядре.

В эукариотической клетке имеются все органоиды, которые участвуют в выполнении разнообразных функций.

Более подробно на эукариотических клетках остановимся в следующем пункте.

Сходства и различия в строении клеток животных, растений и грибов

У всех эукариотических клеток существует ряд общих признаков:

Сходство и различие строения клеток эукариот отразим в таблице.

Сходством в строении клеток данных групп организмов является наличие плазматической мембраны, цитоплазмы, ядра, а также определенного набора органоидов.

Можно выделить черты сходства в строении клеток грибов и животных. В структурах этих существ имеется запасное вещество – гликоген, отсутствуют пластиды. Вакуоли мелкие или вовсе отсутствуют. Отличием клеток грибов является присутствие в клетки 2, а иногда и больше ядер.

Сходством растительной и животной клетки будет наличие одного ядра.

Растительная клетка имеет много различий. Для нее характерна крупная вакуоль и многочисленные пластиды, в которых локализованы фотосинтезирующие пигменты. Основным запасным продуктом является крахмал. Клеточная мембрана состоит преимущественно из целлюлозы.

Черты сходства клеток грибов и растений, а также животных свидетельствуют об общем происхождении. Однако, в ходе эволюции каждая группа организмов приспосабливались к условиям среды обитания. Соответственно начали появляться черты различия клеток животных, грибов и растений.

Источник: https://100urokov.ru/predmety/stroenie-kletki

Ядро клетки

Ядерная клетка это

Ядро – это обязательная часть клетки всех одноклеточных и многоклеточных эукариот. Ядро обычно имеет овальную форму, состоит из ядерной оболочки, ядерного матрикса, кариоплазмы, ядрышка и хроматина. Кроме того, в ядре находятся продукты его метаболической активности.

Ядерная оболочка состоит из двух биомембран, отделяющих ядро от цитоплазмы. Наружная (внешняя) ядерная мембрана по своему строению близка к мембране эндоплазматической сети (ЭПС). На ее поверхности расположено большое количество рибосом, так же как на мембранах шероховатой ЭПС.

Во многих клетках внешняя ядерная мембрана непосредственно переходит в систему каналов ЭПС, а у некоторых организмов в значительной степени даже заменяет ее. Внешняя мембрана ядерной оболочки не представляет собой идеально ровную поверхность – она может образовывать выпячивания в сторону цитоплазмы.

Клеточное ядро: 1 – наружная ядерная мембрана; 2 – внутренняя ядерная мембрана; 3 – рибосомы; 4 – хроматин; 5 – ядрышко; 6 – кариоплазма; 7 – ядерная пора; 8 – шероховатая ЭПС; 9 – перинуклеарное пространство; 10 – ламина

Внутреннюю мембрану ядерной оболочки внутри ядра подстилает плотная ядерная пластинка (ламина), состоящая преимущественно из промежуточных филаментов и выполняющая скелетную (опорную) функцию. Ламина принимает участие в фиксации хроматина – к ней могут прикрепляться концевые и другие участки хромосом.

Пространство между двумя мембранами ядерной оболочки называют перинуклеарным пространством.

Наружная ядерная мембрана переходит во внутреннюю в области ядерных пор. Ядерные поры имеют сложное строение, они обеспечивают избирательный транспорт различных веществ из цитоплазмы в ядро и из ядра в цитоплазму.

Ядерная пора – это не просто сквозное отверстие, она заполнена несколькими белковыми структурами, регулирующими транспорт веществ, и закреплена в мембране ядерной оболочки с помощью интегральных белков.

Совокупность ядерных пор и находящихся в них белков называют комплексом пор ядра или поровым комплексом. Ядерные поры очень сложно устроены и способны к некоторой автономной активности.

Иногда они встречаются не только в ядерной оболочке, но и в мембранах ЭПС и в некоторых других мембранных структурах цитоплазмы. Поэтому многие исследователи предлагают считать ядерную пору отдельным органоидом.

Ядерный поровый комплекс одинаково устроен у всех эукариот– он представляет собой цилиндрическую структуру: внешний диаметр поры около 100 нм, высота примерно 75 нм.

Количество ядерных пор у разных организмов составляет в среднем от нескольких сотен до нескольких тысяч на одно ядро.

Количество пор может меняться в течение клеточного цикла в зависимости от интенсивности метаболической деятельности ядра.

Схема строения порового комплекса: А – поровый комплекс (вид сверху); Б – поровый комплекс в разрезе; В – молекулярная организация порового комплекса: 1 – белки (глобулы) порового комплекса; 2 – наружная ядерная мембрана; 3 – внутренняя ядерная мембрана; 4 – перинуклеарное пространство; 5 – центральная часть (диафрагма) поры

Через ядерные поры некоторые вещества проходят пассивно и неизбирательно – это сравнительно небольшие молекулы сахаров и других органических соединений, ионы солей и др.

Активно и избирательно (с помощью специальных транспортных белков) через ядерные поры из ядра в цитоплазму переносятся белки, субъединицы рибосом, рибонуклеиновые кислоты и их комплексы с белками.

Из цитоплазмы в ядро переносятся крупные молекулы белков.

Функция ядерной оболочки – обеспечение двухстороннего регулируемого взаимодействия ядра и цитоплазмы.

Ядерный матрикс – это каркасная внутриядерная система, служащая объединяющей основой для всех ядерных компонентов: хроматина, ядрышка, ядерной оболочки. Он обеспечивает трехмерное пространство ядра, обособление всех компонентов друг от друга и упорядочение процессов репликации и транскрипции. Все компоненты ядерного матрикса могут значительно изменяться в процессе клеточного цикла.

Схема внутреннего строения клеточного ядра: 1 – ядерная оболочка; 2 – ядерная пора; 3 – ядерный матрикс; 4 – конденсированный диффузный хроматин; 5 – ядрышко (гранулярный и фибриллярный компоненты, в центральных светлых зонах находится ДНК); 6 и 7 – различные рибонуклеопротеиды (РНП); 8 – ламелла с хроматином; 9 – кариоплазма (ядерный сок) Кариоплазма (нуклеоплазма). Ядро клетки заполнено густой жидкоттью – кариоплазмой (от греч. karyon – ядро), или ядерным соком. По составу кариоплазма сходна с гиалоплазмой, поэтому низкомолекулярные вещества легко проходят через ядерные поры в обоих направлениях. Кариоплазма как жидкая среда обеспечивает протекание всех внутриядерных процессов и способствует пространственной организации хроматина. По сравнению с гиалоплазмой кариоплазма отличается значительно большей концентрацией ионов Na + , K + и Cl — и меньшим содержанием SO4 2- . В кариоплазме также больше свободной воды, чем в гиалоплазме.

Хроматин

СОДЕРЖАНИЕ

  • 1 Хроматин
  • 2 Ядрышко
  • 3 Функции ядра

Главный компонент ядра – хроматин, являющийся основным носителем наследственных свойств клетки и всего организма. Количество хроматиновых нитей в интерфазном (неделящемся) ядре соответствует количеству митотических хромосом в делящемся ядре.

Хроматиновая нить – это хромосома в делящемся ядре.

Хроматин в эукариотических клетках может находиться в двух разных состояниях: максимально скрученном (конденсированном) во время митотического (и мейотического) деления клеток и разрыхленном (деконденсированном) в неделящемся ядре.

Очень часто термином «хромосома» называют хроматиновую нить именно в максимально конденсированном состоянии.

Чем слабее конденсация хроматина (то есть чем сильнее он раскручен), тем больше вероятность его участия в синтетических процессах.

Степень деконденсации хроматина бывает различной в ядрах клеток разных организмов, разных тканей, на разных участках одной и той же хроматиновой нити.

В интерфазном ядре (в промежуточной стадии между делениями клетки), когда хроматиновые нити деконденсированы, в них тем не менее остаются небольшие сильно конденсированные участки.

Такие уплотненные участки получили название гетерохроматина, а остальная масса деконденсированного хроматина – эухромитина.

Постоянно гетерохроматическими остаются теломерные (концевые), центромерные (при митозе связывающиеся с веретеном деления) и некоторые другие участки хромосом. Постоянный, или облигатный (обязательный), гетерохроматин генетически неактивен. На долю постоянного гетерохроматина приходится до 15 % всего хроматина у млекопитающих, до 60 % – у амфибий.

Состояние эухроматина в интерфазном ядре может сильно изменяться. Обычно в интерфазных клетках только около 10 % генов активны, а остальные находятся в большей или меньшей степени конденсированном состоянии. Например, у самок млекопитающих в интерфазе одна X-хромосома полностью спирализована. При попадании в дочернюю клетку эта же хромосома может оказаться в деконденсированном состоянии.

В состав каждой хроматиновой нити входит нить ДНК и несколько типов специальных белков. Среди белков хроматина выделяют гистоновые и негистоновые белки. Гистоновые белки, или гистоны, составляют около 80 % всех хроматиновых белков.

Несмотря на большое количество гистонов, их разнообразие невелико – всего пять – семь типов молекул. функция гистонов – обеспечение конденсации, или компактизации, хроматина.

Негистоновые белки в составе хроматина занимают небольшой объем, но очень многочисленны (несколько сотен) и разнообразны по функциям.

Ядрышко

Ядрышко (нуклеола) – плотное тельце, состоит преимущественно из рибонуклеопротеидов (РНП) – предшественников большой и малой субъединиц рибосом. Внутри ядра находится одно ядрышко (или несколько мелких). При делении ядра ядрышки обычно распадаются, а по окончании деления формируются заново.

Ядрышки обнаруживаются в ядрах почти всех эукариотических клеток. Ядрышко не является самостоятельной структурой ядра. Оно образуется в результате концентрации в определенном месте кариоплазмы участков хромосом, несущих информацию о структуре рРНК. Эти участки называют ядрышковыми организаторами.

Они содержат многочисленные копии генов, кодирующих рРНК. В ядрышке происходит процесс синтеза рРНК и формирование субъединиц рибосом. Ядрышко было открыто в 1774 году, но почти два века его функция была неизвестна. Предполагалось, что это какие-то запасные вещества, расходуемые ядром во время деления.

Только в середине XX века благодаря созданию электронного микроскопа строение и функция ядрышка были выяснены.

Функции ядра

Обладая генетической информацией, заключенной в хромосомах, при тесном взаимодействии с белками (ферментами) ядро управляет всеми процессами, обеспечивающими жизнедеятельность клетки: биохимическими, физиологическими, морфологическими. В ядре синтезируются рибонуклеиновые кислоты, субъединицы рибосом, некоторые белки. При делении клетки ядро обеспечивает передачу наследственной информации дочерним клеткам.

В ядре осуществляется хранение, воспроизведение, реализация и восстановление генетического материала.

Ядро находится в постоянном и тесном взаимодействии с цитоплазмой; в нем синтезируются молекулы-посредники (иРНК), переносящие генетическую информацию к центрам белкового синтеза в цитоплазме.

Таким образом, ядро контролирует синтез всех белков и через них – все физиологические процессы в клетке.

Поэтому экспериментально получаемые безъядерные клетки и их фрагменты всегда погибают, а при пересадке ядра в такие клетки их жизнеспособность восстанавливается.

Источник: https://blgy.ru/cell-nucleus-2/

Клеточное ядро как важнейший компонент клетки #47

Ядерная клетка это
К Клеточное ядро является обязательной составляющей клетки, которое регулирует обмен веществ и отвечает за передачу и хранение наследственной информации.

Клеточное ядро

Схема строения интерфазного ядра: 1 — наружная мембрана; 2 — внутренняя мембрана; 3 — перинуклеарное пространство; 4 — пора; 5 — ядрышко; 6 — кариоплазма; 7 — хроматин.

Ядро является обязательным компонентом всех эукариотических клеток. Форма и размеры ядра зависят от формы и величины клетки и выполняемой ею функции.

Химический состав ядра

По химическому составу ядро отличается от остальных компонентов клетки высоким содержанием ДНК (15 — 30%) и РНК (12%). В ядре клетки сосредоточено 99% ДНК клетки в виде комплекса с белками – дезоксирибонуклеопротеина (ДНП).

Ядерная оболочка

Ядерная оболочка (кариолемма) представлена двумя биологическими мембранами, между которыми находится перинуклеарное пространство. Наружная ядерная мембрана непосредственно соединена с мембранами каналов эндоплазматической сети.

На ней располагаются рибосомы. Ядерная оболочка пронизана многочисленными порами, через которые происходит обмен веществ между ядром и цитоплазмой.

Основная функция ядерной оболочки: регуляция обмена веществ между ядром и цитоплазмой клетки.

Ядерный сок

Ядерный сок (кариоплазма) – это однородная масса, заполняющая пространство между структурами ядра. В его состав входят вода, минеральные соли, белки (ферменты), нуклеотиды, аминокислоты, АТФ и различные виды РНК.

Функция кариоплазмы: обеспечение взаимосвязей между ядерными структурами.

Метафазная хромосома

Схема строения метафазной хромосомы (А) и типы хромосом (Б).

А: 1 — плечо; 2 — центромера; 3 — вторичная перетяжка; 4 — спутник; 5 — две хроматиды; Б: 1 — акроцентрическая; 2 — субметацентрическая; 3 — метацентрическая.

Метафазная хромосома состоит из двух продольных нитей ДНП – хроматид, соединенных друг с другом в области первичной перетяжки – центромеры. Центромера делит каждую хроматиду на два плеча.

В зависимости от расположения первичной перетяжки различают следующие типы хромосом: метацентрические (равноплечие), в которых центромера расположена посередине, а плечи примерно равной длины; субметацентрические (неравноплечие), когда центромера смещена от середины хромосомы, а плечи неравной длины; акроцентрические (палочковидные), когда центромера смещена к одному концу хромосомы и одно плечо очень короткое. Некоторые хромосомы могут иметь вторичные перетяжки, отделяющие от хроматиды участок, называемый спутником. Основная функция хромосом – хранение, воспроизведение и передача генетической информации.

Кариотип

Кариотип – это диплоидный набор хромосом соматических клеток организма определенного вида. Каждый вид растений и животных имеет определенное, постоянное число хромосом. Так, в ядре соматических клеток у лошадиной аскариды содержится 2 хромосомы, у мухи дрозофилы – 8, у человека – 46.

Во всех соматических клетках число хромосом всегда парное (диплоидный набор – 2n), т.е. каждая хромосома в наборе имеет парную, гомологичную (одну из этих хромосом дочерний организм получает от отца, а вторую от матери). Гомологичные хромосомы одинаковы по величине, форме, расположению центромер.

Для каждого биологического вида характерно постоянство числа, величины и формы хромосом. При образовании половых клеток из каждой пары гомологичных хромосом в гамету попадает только одна, поэтому хромосомный набор гамет называется гаплоидным (одинарным – 1n).

При оплодотворении восстанавливается диплоидный набор хромосом.

Ядрышки

Ядрышки имеют шаровидную форму, не окружены мембраной. Они содержат преимущественно белки и р-РНК. Ядрышки – непостоянные образования, они растворяются в начале деления клетки и восстанавливаются после его окончания.

Их образование связано со вторичными перетяжками (ядрышковыми организаторами) спутничных хромосом, в которых локализованы гены, кодирующие синтез рибосомальных РНК и белков. Функция ядрышек – образование субъединиц рибосом.

Эукариотические клетки

Клетки подавляющего большинства живых организмов имеют оформленное, сложно устроенное ядро, цитоплазму с органоидами и оболочку. Такие клетки называются эукариотическими. Они характерны для протистов, грибов, растений и животных.

Прокариотические клетки

Прокариотические клетки не имеют оформленного ядра и мембранных органоидов. Генетический аппарат прокариот представлен нуклеоидом одной кольцевой молекулой ДНК, не связанной с белками-гистонами и не окруженной мембраной. Имеются рибосомы. Функций мембранных органоидов выполняют впячивания плазмалеммы – мезосомы. К прокариотам относятся бактерии и цианобактерии.

Клетки растений и животных сходны по строению и химическому составу, но между ними имеются и определенные отличия.

Отличие про- от эукариотических клеток

ПризнакПрокариотыЭукариоты
Цитоплазматическая мембранаЕстьЕсть
Клеточная стенкаЕстьУ животных нет, у растений есть
Ядерная оболочкаНетЕсть
МитохондрииНетЕсть
Комплекс ГольджиНетЕсть
ЭПСНетЕсть
ЛизосомыНетЕсть
МезосомыЕстьНет
РибосомыЕстьЕсть
ХромосомыНет(кольцевая молекула ДНК)Набор хромосом (ДНК + белок)
Способ размноженияПростое бинарное делениеМитоз, амитоз

Отличие животных от растительных клеток

ПризнакЖивотные клеткиРастительные клетки
Клеточная стенкаНетЕсть (целлюлоза)
Тип питанияГетеротрофныеАвтотрофные
ПластидыНетЕсть
ЦентросомаЕстьНет
Центральная вакуольНетЕсть
Запасное питательное веществоГликогенКрахмал

1. Биология для абитуриентов. Авторы: Давыдов В.В. , Бутвиловский В.Э. , Рачковская И. В. , Заяц Р.Г.

Источник: https://biobloger.ru/kletochnoe-yadro.html

Особенности строения и функции ядра клетки

Ядерная клетка это

Ядро – главное составляющее живой клетки, которое несет наследственную информацию, закодированную набором генов. Оно занимает центральное положение в клетке. Размеры варьируются, форма обычно сферичная или овальная. В диаметре ядро в разных клетках может быть от 8 до 25мкм. Есть исключения, примеру, яйцеклетки рыб имеют ядра диаметром в 1 мм.

Особенности строения ядра

Заполнено ядро жидкостью и несколькими структурными элементами. В нем выделяют оболочку, набор хромосом, нуклеоплазму, ядрышка. Оболочка двухмембранная, между мембранами находится перенуклеарное пространство.

Внешняя мембрана сходна по строению с эндоплазматическим ретикулумом. Она связана с ЭПР, который будто ответвляется от ядерной оболочки. Снаружи на ядре находятся рибосомы.

Внутренняя мембрана прочная, так как в ее состав входит ламина. Она выполняет опорную функцию и служит местом крепления для хроматина.

Мембрана имеет поры, обеспечивающие обменные процессы с цитоплазмой. Ядерные поры состоят из транспортных белков, которые поставляют в кариоплазму вещества путем активного транспорта. Пассивно сквозь поровые отверстия могут пройти только небольшие молекулы. Также каждая пора прикрыта поросомой, которая регулирует обменные процессы в ядре.

Количество ядер в разных по специализации клетках различно. В большинстве случаев клетки одноядерные, но есть ткани, построенные из многоядерных клеток (печеночная или ткань мозга). Есть клетки лишенные ядра – это зрелые эритроциты.

У простейших выделяют два типа ядер: одни отвечают за сохранение информации, другие – за синтез белка.

Ядро может прибывать в состоянии покоя (период интерфазы) или деления. Переходя в интерфазу, имеет вид сферического образования с множеством гранул белого цвета (хроматина). Хроматин бывает двух видов: гетерохроматин и эухроматин.

Эухроматин – это активный хроматин, который сохраняет деспирализированное строение в покоящемся ядре, способен к интенсивному синтезу РНК.

Гетерохроматин – это участки хроматина, которые находятся в конденсированном состоянии. Он может при необходимости переходить в эухроматиновое состояние.

При использовании цитологического метода окрашивания ядра (по Романовскому-Гимзе) выявлено, что гетерохроматин меняет цвет, а эухроматин нет. Хроматин построен из нуклеопротеидных нитей, названных хромосомами.

Хромосомы несут в себе основную генетическую информацию каждого человека.

Хроматин — форма существования наследственной информации в интерфазном периоде клеточного цикла, во время деления он трансформируется в хромосомы.

Строение хромосом

Каждая хромосома построена из пары хроматид, которые находятся параллельно друг к другу и связаны только в одном месте – центромере. Центромера разделяет хромосому на два плеча. В зависимости от длины плеч выделяют три вида хромосом:

  • Равноплечие;
  • разноплечие,
  • одноплечие.

Некоторые хромосомы имеют дополнительный участок, который крепится к основному нитевидными соединениями – это сателлит. Сателлиты помогают идентифицировать разные пары хромосом.

Метафазное ядро представляет собой пластинку, где располагаются хромосомы. Именно в эту фазу митоза изучается количество и строение хромосом. Во время метафазы сестринские хромосомы двигаются в центр и распадаются на две хроматиды.

Строение ядрышка

В ядре также находится немембранное образование — ядрышко. Ядрышки представляют собой уплотненные, округлые тельца, способные преломлять свет. Это основное место синтеза рибосомальной РНК и необходимых белков.

Число ядрышек различно в разных клетках, они могут объединяться в одно крупное образование или существовать отдельно друг от друга в виде мелких частиц. При активации синтетических процессов объем ядрышка увеличивается.

Оно лишено оболочки и находится в окружении конденсированного хроматина. В ядрышке также содержатся металлы, в большей мере цинк.

Таким образом, ядрышко – это динамичное, меняющееся образование, необходимое для синтеза РНК и транспорта ее в цитоплазму.

Нуклеоплазма заполняет все внутреннее пространство ядра. В нуклеоплазме находится ДНК, РНК, протеиновые молекулы, ферментативные вещества.

Функции ядра в клетке

  1. Принимает участие в синтезе белка, рибосомной РНК.
  2. Регулирует функциональную активность клетки.
  3. Сохранение генетической информации, точная ее репликация и передача потомству.

Роль и значение ядра

Ядро является главным хранилищем наследственной информации и определяет фенотип организма. В ядре ДНК существует в неизмененном виде благодаря репарационным ядерным ферментам, которые способны ликвидировать поломки и мутации. Во время клеточного деления ядерные механизмы обеспечивают точное и равномерное расхождение генетической информации в дочерние клетки.

Оцените, пожалуйста, статью. Мы старались:) (17 4,71 из 5)
Загрузка…

Источник: https://animals-world.ru/yadro-stroenie-i-funkcii-v-period-interfazy/

Все о медицине
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: