Мейоз – редукционное деление – биология – Я Биолог
Узнать о виде деления клетки поможет данная статья. Мы расскажем кратко и понятно о мейозе, о фазах, которые сопровождают этот процесс, обозначим основные их особенности, узнаем, какие признаки характеризуют мейоз.
Редукционное деление клетки, другими словами – мейоз – это вид деления ядра, при котором число хромосом уменьшается в два раза.
В переводе с древнегреческого языка, мейоз обозначает уменьшение.
Данный процесс происходит в два этапа:
На этом этапе в процессе мейоза число хромосом в клетке уменьшается вдвое.
В ходе второго деления гаплоидность клеток сохраняется.
Особенностью данного процесса является то, что протекает он только лишь в диплоидных, а также в чётных полиплоидных клетках. А всё потому, что в результате первого деления в профазе 1 в нечётных полиплоидах нет возможности обеспечить попарное слияние хромосом.
В биологии деление происходит на протяжении четырёх фаз: профазы, метафазы, анафазы и телофазы. Мейоз не является исключением, особенностью данного процесса является то, что происходит он в два этапа, между которыми имеется короткая интерфаза.
Первое деление:
Профаза 1 является достаточно сложным этапом всего процесса в целом, состоит она из пяти стадий, которые внесены в следующую таблицу:
Стадия | Признак |
Лептотена | Хромосомы укорачиваются, конденсируется ДНК и образуются тонкие нити. |
Зиготена | Гомологичные хромосомы соединяются в пары. |
Пахитена | По длительности самая длинная фаза, в ходе которой гомологические хромосомы плотно присоединяются друг к другу. В результате происходит обмен некоторых участков между ними. |
Диплотена | Хромосомы частично деконденсируются, часть генома начинает выполнять свои функции. Образуется РНК, синтезируется белок, при этом хромосомы ещё соединены между собой. |
Диакинез | Снова происходит конденсация ДНК, процессы образования прекращаются, ядерная оболочка исчезает, центриоли располагаются в противоположных полюсах, но хромосомы соединены между собой. |
Заканчивается профаза образованием веретена деления, разрушением ядерных мембран и самого ядрышка.
Метофаза первого деления знаменательна тем, что хромосомы выстраиваются вдоль экваториальной части веретена деления.
Во время анафазы 1 сокращаются микротрубочки, биваленты разделяются и хромосомы расходятся к разным полюсам.
В отличие от митоза, на этапе анафазы к полюсам отходят целые хромосомы, которые состоят из двух хроматид.
На этапе телофазы деспирализуются хромосомы и образуется новая ядерная оболочка.
Рис. 1. Схема мейоза первого этапа деления
Второе деление имеет такие признаки:
- Для профазы 2 характерна конденсация хромосом и разделение клеточного центра, продукты деления которого расходятся к противоположным полюсам ядра. Ядерная оболочка разрушается, образуется новое веретено деления, которое располагается перпендикулярно по отношению к первому веретену.
- В ходе метафазы хромосомы вновь располагаются на экваторе веретена.
- Во время анафазы хромосомы делятся и хроматиды располагаются по разным полюсам.
- Телофаза обозначена деспирализацией хромосом и появлением новой ядерной оболочки.
Рис. 2. Схема мейоза второго этапа деления
В результате из одной диплоидной клетки путём такого деления получаем четыре гаплоидных клетки. Исходя из этого, делаем выводы, что мейоз – это форма митоза, в результате которого из диплоидных клеток половых желёз образуются гаметы.
В ходе мейоза на этапе профазы 1 происходит процесс кроссинговера – перекомбинация генетического материала. Помимо этого во время анафазы, как первого, так и второго деления, хромосомы и хроматиды расходятся к разным полюсам в случайном порядке. Это объясняет комбинативную изменчивость исходных клеток.
В природе мейоз имеет огромное значение, а именно:
- Это один из основных этапов гаметогенеза;
Рис. 3. Схема гаметогенеза
- Осуществляет передачу генетического кода при размножении;
- Получаемые дочерние клетки не похожи на материнскую клетку, а также различаются между собой.
Мейоз очень важен для образования половых клеток, так как в результате оплодотворения гамет ядра сливаются. В противном случае в зиготе число хромосом было бы вдвое больше. Благодаря такому делению половые клетки гаплоидны, а при оплодотворении восстанавливается диплоидность хромосом.
Мейоз – это вид деления эукариотической клетки, при котором из одной диплоидной клетки образуется четыре гаплоидных, путём уменьшения числа хромосом.
Весь процесс проходит в два этапа – редукционного и эквационного, каждый из которых состоит из четырёх фаз – профазы, метафазы, анафазы и телофазы.
Мейоз очень важен для образования гаметы, для передачи генетической информации будущим поколениям, а также осуществляет перекомбинацию генетического материала.
Источник:
Мейоз. Редукционное деление
Мейоз — это процесс деления клеточных ядер, приводящий к уменьшению числа хромосом вдвое. Мейоз состоит из двух последовательных делений (редукционного и эквационного), которым предшествует однократная репликация ДНК. Интерфаза мейоза аналогична интерфазе митоза.
Редукционное деление
Профаза I — состоит из пяти стадий: лептотены, зиготе-ны, пахитены, диплотены, диакинеза.
Лептотена — реплицированные хромосомы конденсируются.
Зиготена — начинается конъюгация гомологичных хромосом. Образуются биваленты, или тетрады, состоящие из четырех сестринских хроматид.
Пахитена — стадия, на которой происходит кроссинго-вер.
Диплотена — конъюгировавшие хромосомы разделяются, хромосомы бивалента отодвигаются друг от друга, но продолжают быть связанными хиазмами — местами, где произошел кроссинговер.
Диакинез — ядерная оболочка и ядрышки исчезают. Отчетливо видно, что каждый бивалент состоит из четырех хроматид. Сестринские хроматиды соединены центромерой, несестринские — хиазмами. По этим точкам можно определить только факт произошедшего кроссинговера, ибо наблюдать его нельзя.
Метафаза I — хромосомы выстраиваются по экватору веретена деления. Центромеры обращены к полюсам.
Анафаза I — нити веретена сокращаются, гомологичные хромосомы расходятся к полюсам клетки, где формируются гаплоидные наборы хромосом (два набора на клетку). На этой стадии возникают хромосомные рекомбинации, повышающие степень изменчивости потомков.
Телофаза I — формируются клетки с гаплоидным набором хромосом и удвоенным количеством ДНК. Формируется ядерная оболочка. Веретено разрушается. В конце телофазы I в результате цитокинеза формируется диада. В каждую клетку попадает две сестринские хроматиды, соединенные центромерой.
Эквационное деление состоит из профазы II, метафазы II, анафазы II, телофазы II и цитокинеза.
Клетки, содержащие гаплоидный набор хромосом, состоящих из двух хроматид, образуют клетки с гаплоидным набором хромосом, состоящих из одной хроматиды. Таким образом, из одной диплоидной клетки (овогония, или спер-матогония) образуются четыре клетки с гаплоидным набором хромосом.
Биологическое значение мейоза заключается в образовании клеток, участвующих в половом размножении, в поддержании генетического постоянства видов. Мейоз служит основой комбинативной изменчивости организмов. Нарушения мейоза у человека могут привести к таким патологиям, как болезнь Дауна, идиотия и др.
Источник:
Деление клетки – мейоз
половое или редукционное деление
Давайте сразу определимся — на эту тему есть очень много материала. Детально разобраны все стадии и сопутствующие процессы. Это полезно знать. Но здесь мы разберем ровно то, что необходимо знать для подготовки к экзамену.
Подробный и детальный разбор сущности мейоза можно прочитать ЗДЕСЬ
Итак, мейоз — это половое деление клетки.
Размножение с участием половых клеток характерно для развитых организмов. Простейшие обходятся другими видами размножения.
В чем суть полового размножения?
Половые клетки — мужская и женская содержать гаплойдный (=одинарный) набор хромосом. Все остальные клетки тела (=соматические) содержат диплойдный (=двойной) набор.
Две клетки объединяются (мужская половая клетка оплодотворяет женскую), образуется зигота — новый организм. 1n + 1n =2n. Хромосомный набор нового организма диплойдный (=двойной).
А откуда тогда берутся эти половые клетки с меньшим набором хромосом?
Из соматических в результате мейоза
Деление клетки мейоз — процесс, состоящий из двух последовательных делений, каждое из которых включает в себя фазы, которые мы уже наблюдали в митозе:
Фазы мейоза
Мейоз 1
- Профаза:
- Хроматин ядра сгущается, уплотнятся и спирализуется, образуя хромосомы;
- Гомологичные хромосомы сближаются и образуют пару хромосом. Когда они соприкасаются, происходит КРОССИНГОВЕР — обемен участками между хромосомами — по сути, обмен генетическим материалом. Т.е. появляется новая комбинация. Это очень важный момент. Это основа наследственной изменчивости. Что дает такая изменчивость? Лучшую приспосабливаемость к окружающей среде.
- Ядерная мембрана растворяется
- Формируется веретено деления.
- Метафаза:Хромосомы выстраиваются по экватору клетки;
- Анафаза:
- Хромосомы разъезжаются к разным полюсам клетки;
- Телофаза:
- Перетяжка разделяет две новые клетки;
- Формируются новые ядра
Результат мейоза 1: из одной диплойдной клетки (2n) образовались две диплойдные (2n) У каждой хромосомы — 2 хроматиды.
Мейоз 2
А вот мейоз 2 это практически тот же процесс, что и митоз. Те же самые фазы: профаза, метафаза, анафаза и телофаза.
Результат мейоза 2 — образуются 4 гаплойдные клетки (1n)
Давайте еще раз обозначим такой момент — мейоз характерен только для половых клеток. Из одной диплойдной клетки образуются 2 гаплойдные. Такое уменьшение числа хромосом нужно, чтобы при оплодотворении получился новый организм с диплойдным (2n) набором — комбинацией отцовского и материнского генетического материала.
Источник: https://yabiolog.ru/konspekty/mejoz-reduktsionnoe-delenie-biologiya.html
Мейоз – Молекулярная биология
Мейоз – это деление, при котором получаются половые клетки (у растений – споры). Биологическое значение мейоза:
- рекомбинация (перемешивание наследственной информации)
- редукция (уменьшение количества хромосом в 2 раза).
Отличия мейоза от митоза по итогам
1. После митоза получается две клетки, а после мейоза – четыре.
2. После митоза получаются соматические клетки (клетки тела), а после мейоза – половые клетки (гаметы – сперматозоиды и яйцеклетки; у растений после мейоза получаются споры).
3. После митоза получаются одинаковые клетки (копии), а после мейоза – разные (происходит рекомбинация наследственной информации).
4. После митоза количество хромосом в дочерних клетках остается таким же, как было в материнской, а после мейоза уменьшается в 2 раза (происходит редукция числа хромосом; если бы её не было, то после каждого оплодотворения число хромосом возрастало бы в два раза; чередование редукции и оплодотворения обеспечивает постоянство числа хромосом).
Отличия мейоза от митоза по ходу
1. В митозе одно деление, а в мейозе – два (из-за этого получается 4 клетки).
2. В профазе первого деления мейоза происходит конъюгация (тесное сближение гомологичных хромосом) и кроссинговер (обмен участками гомологичных хромосом), это приводит к перекомбинации (рекомбинации) наследственной информации.
3. В анафазе первого деления мейоза происходит независимое расхождение гомологичных хромосом (к полюсам клетки расходятся двуххроматидные хромосомы). Это приводит к рекомбинации и редукции.
4. В интерфазе между двумя делениями мейоза удвоения хромосом не происходит, поскольку они и так двойные.
Второе деление мейоза ничем не отличается от митоза. Как и в митозе, в анафазе II мейоза к полюсам клетки расходятся одинарные сестринские хромосомы (бывшие хроматиды). (сайт)
При половом размножении дочерний организм возникает в результате слияния двух половых клеток (гамет) и последующего развития из оплодотворенной яйцеклетки — зиготы.
Половые клетки родителей обладают гаплоидным набором (n) хромосом, а в зиготе при объединении двух таких наборов число хромосом становится диплоидным (2n): каждая пара гомологичных хромосом содержит одну отцовскую и одну материнскую хромосому.
Гаплоидные клетки образуются из диплоидных в результате особого клеточного деления — мейоза.
Мейоз — разновидность митоза, в результате которого из диплоидных (2п) соматических клеток половых желез образуются гаплоидные гаметы (1n). При оплодотворении ядра гаметы сливаются, и восстанавливается диплоидный набор хромосом. Таким образом, мейоз обеспечивает сохранение постоянного для каждого вида набора хромосом и количества ДНК.
Мейоз представляет собой непрерывный процесс, состоящий из двух последовательных делений, называемых мейозом I и мейозом II. В каждом делении различают профазу, метафазу, анафазу и телофазу.
В результате мейоза I число хромосом уменьшается вдвое (редукционное деление): при мейозе II гаплоидность клеток сохраняется (эквационное деление).
Клетки, вступающие в мейоз, содержат генетическую информацию 2n2хр (рис. 1).
В профазе мейоза I происходит постепенная спирализация хроматина с образованием хромосом. Гомологичные хромосомы сближаются, образуя общую структуру, состоящую из двух хромосом (бивалент) и четырех хроматид (тетрада). Соприкосновение двух гомологичных хромосом по всей длине называется конъюгацией.
Затем между гомологичными хромосомами появляются силы отталкивания, и хромосомы сначала разделяются в области центромер, оставаясь соединенными в области плеч, и образуют перекресты (хиазмы). Расхождение хроматид постепенно увеличивается, и перекресты смещаются к их концам.
В процессе конъюгации между некоторыми хроматидами гомологичных хромосом может происходить обмен участками — кроссинговер, приводящий к перекомбинации генетического материала. К концу профазы растворяются ядерная оболочка и ядрышки, формируется ахроматиновое веретено деления.
генетического материала остается прежним (2n2хр).
В метафазе мейоза I биваленты хромосом располагаются в экваториальной плоскости клетки. В этот момент спирализация их достигает максимума. генетического материала не изменяется (2п2хр).
В анафазе мейоза I гомологичные хромосомы, состоящие из двух хроматид, окончательно отходят друг от друга и расходятся к полюсам клетки. Следовательно, из каждой пары гомологичных хромосом в дочернюю клетку попадает только одна — число хромосом уменьшается вдвое (происходит редукция). генетического материала становится 1n2хр у каждого полюса.
В телофазе происходит формирование ядер и разделение цитоплазмы — образуются две дочерние клетки. Дочерние клетки содержат гаплоидный набор хромосом, каждая хромосома — две хроматиды (1n2хр).
Интеркинез — короткий промежуток между первым и вторым мейотическими делениями. В это время не происходит репликации ДНК, и две дочерние клетки быстро вступают в мейоз II, протекающий по типу митоза.
Рис. 1. Схема мейоза (показана одна пара гомологичных хромосом). Мейоз I: 1, 2, 3. 4. 5 — профаза; 6 —метафаза; 7 — анафаза; 8 — телофаза; 9 — интеркинез. Мейоз II; 10 —метафаза; II —анафаза; 12 — дочерние клетки.
В профазе мейоза II происходят тс же процессы, что и в профазе митоза. В метафазе хромосомы располагаются в экваториальной плоскости.
Изменений содержания генетического материала не происходит (1n2хр).
В анафазе мейоза II хроматиды каждой хромосомы отходят к противоположным полюсам клетки, и содержание генетического метериала у каждого полюса становится lnlxp. В телофазе образуются 4 гаплоидные клетки (lnlxp).
Таким образом, в результате мейоза из одной диплоидной материнской клетки образуются 4 клетки с гаплоидным набором хромосом. Кроме того, в профазе мейоза I происходит перекомбинация генетического материала (кроссинговер), а в анафазе I и II — случайное отхождение хромосом и хроматид к одному или другому полюсу. Эти процессы являются причиной комбинативной изменчивости.
Биологическое значение мейоза:
1) является основным этапом гаметогенеза;
2) обеспечивает передачу генетической информации от организма к организму при половом размножении;
3) дочерние клетки генетически не идентичны материнской и между собой.
Атак же, биологическое значение мейоза заключается в том, что уменьшение числа хромосом необходимо при образовании половых клеток, поскольку при оплодотворении ядра гамет сливаются.
Если бы указанной редукции не происходило, то в зиготе (следовательно, и во всех клетках дочернего организма) хромосом становилось бы вдвое больше. Однако это противоречит правилу постоянства числа хромосом.
Благодаря мейозу половые клетки гаплоидны, а при оплодотворении в зиготе восстанавливается диплоидный набор хромосом (рис. 2 и 3).
Рис. 2. Схема гаметогенеза: à — сперматогенез; á — овогенез
Рис. 3. Схема, иллюстрирующая механизм сохранения диплоидного набора хромосом при половом размножении
Источник: Краснодембский Е. Г.”Общая биология: Пособие для старшеклассников и поступающих в вузы”
Н. С. Курбатова, Е. А. Козлова “Конспект лекций по общей биологии”
Р.Г. Заяц “Биология для абитуриентов. Вопросы, ответы, тесты, задачи” сайт
Источник: https://www.sites.google.com/site/molekularnaabiologia/mejoz