Хроматиды это две субъединицы хромосомы

Клетка – генетическая единица живого. Хромосомы, их строение

Хроматиды это две субъединицы хромосомы

Генетическая информация каждого живого организма находится именно в клетке, так как основная её структура – ядро содержит хромосомы, которые и отвечают за определённые внешние и внутренние признаки. У организмов, не имеющих ядра, например у вирусов, наследственная информация содержится в виде кольцевой ДНК.

Поэтому для воспроизводства данные организмы проникают в многоклеточные организмы, так как генетический материал не реализуется вне клетки.

Из этого следует, что клетка является генетической единицей всего живого, потому что она обладает минимальным набором компонентов для хранения, изменения, реализации и передачи потомкам информации о фенотипе и генотипе организма.

Все эти процессы возможны, благодаря тому, что в ядре находятся хромосомы. 

Строение и функции хромосом

Хромосома – структура клеточного ядра, имеющая в своём составе дезоксирибонуклеиновую кислоту (ДНК) и белок – гистон, что и определяет её наследственную функцию.  

Соединение ДНК и белка  гистона называется хроматином. Из него в профазе митоза, в самом начале деления клетки, образуются хромосомы. Строение хромосомы наиболее хорошо удаётся рассмотреть под световым микроскопом в процессе деления клетки, а конкретно в метафазе митоза. 

Хромосома состоит из двух сестринских хроматид, представляющих собой нити молекулы ДНК с белками. Хроматиды образуются в результате удвоения хромосомы в процессе деления клетки.

У каждой хромосомы имеется участок ДНК, называемый центромерой (кинетохором). Здесь в стадии профазы и метафазы деления клетки осуществляется соединение двух дочерних хроматид. Центромера делит хромосому на два плеча. 

Схема строения хромосомы в поздней профазе – метафазе митоза.

Существуют хромосомы, имеющие вторичные перетяжки, которые отделяют от плеча хромосомы так называемый спутник, из которого в последующем в интерфазном ядре образуется ядрышко. 

Концевые участки хромосом принято называть теломерами.

По форме хромосомы различают:

  • Метацентрические. Центромера находится в середине и плечи её равны.
  • Субметацентрические. Центромера смещена относительно середины и одно плечо короче другого.
  • Акроцентрические. Центромера расположена у конца хромосомы и одно плечо намного короче другого.

Существует две классификации хромосом по размеру и форме:

Денверская классификация помимо размеров хромосом, также учитывает их форму, расположение кинетохора и наличие вторичных перетяжек, спутников. Важным является значение центромерного индекса, отражающего процентное соотношение длины короткого плеча к длине всей хромосомы. Проводилось сплошное окрашивание хромосом.

Группы хромосом по денверской классификации: 

  • Группу А образуют  1 – 3 большие метацентрические и субметанцентрические хромосомы, имеющие центромерный индекс (ЦИ) от 38 – 49.
  • Группу В образуют 4 – 5 пары больших субметацентрических хромосом с центромерным индексом 24 – 30.
  • Группа С состоит из 6 – 12 пары субметацентрических хромосом среднего размера с центромерным индексом   27 – 35. Х-хромосому относят именно к этой группе. 
  • Группу D составляют 13 – 15 пары акроцентрических хромосом сильно отличающихся от всех остальных хромосом человека, ЦИ около 15.
  • Группа Е образована 16 – 18 парами относительно коротких метацентрических хромосом с ЦИ 26 – 40.
  • Группа F (19 – 20 пары): две короткие, субметанцентрических хромосомы с ЦИ 36 – 46.
  • Группа G, образованная 21 – 22 парами маленьких акроцентрических хромосом с ЦИ 13 -33. В неё входит Y – хромосома. 

Парижская классификация основывается на методах специального дифференциального окрашивания, при котором каждая хромосома имеет индивидуальный порядок чередующихся светлых и тёмных сегментов. 

Число хромосом и их видовое постоянство. Соматические и половые клетки

У многоклеточных организмов клетки подразделяются на два вида:

Соматическими называют все клетки тела, которые образуются в результате митоза.

Для этих клеток характерным признаком является наличие постоянного числа хромосом. Для каждого вида организмов их количество строго определено. Человек имеет 23 пары хромосом. 

Набор хромосом соматических клеток называется диплоидным (двойным). 

Половые же клетки всегда содержат уменьшенный вдвое, гаплоидный (одинарный) набор хромосом. Половые клетки также называются гаметами

Совокупность полного набора хромосом, присущая клеткам определённого биологического вида, отдельного организма или линии клеток называется кариотипом

Принято считать, что кариотип является видовой характеристикой. Но бывает и так, что он различается у особей одного вида. Пример этого отличающиеся друг от друга половые хромосомы мужских и женских организмов.

У Y – хромосомы отсутствуют некоторые аллели (модификационные формы одного и того же гена, расположенные в одинаковых участках гомологичных хромосом), тогда как у Х – хромосомы они есть. Мужчины гетерогаметны, то есть несут и X –и  Y – хромосомы, в то время как женщины гомогаметны, так как их половой набор содержит только X – хромосомы.

  Немаловажным фактором являются мутации, которые приводят к различным изменениям кариотипа. Важно отметить, что количество хромосом и уровень организации вида не имеют прямой зависимости. То есть, если вид имеет большое количество хромосом, это не говорит о его высокой организации. Кариотипы диплоидных клеток состоят из пар хромосом, названных гомологичными.

Хромосомы одной пары называются гомологичными, они находятся в одинаковых локусах (местах расположения) и несут аллельные гены.  Одну из хромосом организм всегда получает от матери, другую от отца.

В ядрах некоторых соматических клеток количество хромосом может отличаться от их количества в соматических клетках. Встречаются полплоидные клетки, они содержат более одного гаплоидного набора хромосом и называются соответственно три-, тетраплоидные и т.д. Метаболические процессы в полиплоидных клетках протекают в разы интенсивнее. 

Хромосомы человека делятся на две группы: аутосомы (неполовые) и половые хромосомы, также называемые гетерохромосомами.

В соматических клетках организма человека содержится 22 пары аутосом, которые являются одинаковыми и для мужчин и для женщин, половых же хромосом всего одна пара, эта пара и определяет пол особи. Различают два вида половых хромосом — X и Y.

В половых клетках женщины содержится по две X-хромосомы, а в  половых клетках мужчин две различных хромосомы — X и Y. 

Смотри также:

Источник: https://bingoschool.ru/manual/293/

Хромосомы: строение, функции. Число хромосом – УчительPRO

Хроматиды это две субъединицы хромосомы

Раздел ЕГЭ: 2.7. Клетка — генетическая единица живого. Хромосомы, их строение (форма и размеры) и функции. Число хромосом и их видовое постоянство. Соматические и половые клетки.

Жизненный цикл клетки: интерфаза и митоз. Митоз — деление соматических клеток. Мейоз. Фазы митоза и мейоза. Развитие половых клеток у растений и животных. Деление клетки — основа роста, развития и размножения организмов.

Роль мейоза и митоза

Клетка — генетическая единица живого

Клетка — структурно-функциональная элементарная единица строения и жизнедеятельности всех организмов (кроме вирусов и вироидов — форм жизни, не имеющих клеточного строения). Обладает собственным обменом веществ, способна к самовоспроизведению.

Содержимое клетки отделено от окружающей среды плазматической мембраной. Внутри клетка заполнена цитоплазмой, в которой расположены различные органеллы и клеточные включения, а также генетический материал в виде молекулы ДНК. Каждая из органелл клетки выполняет свою особую функцию, а в совокупности все они определяют жизнедеятельность клетки в целом.

Дезоксирибонуклеиновая кислота (ДНК) — макромолекула (одна из трёх основных, две другие — РНК и белки), обеспечивающая хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Молекула ДНК хранит биологическую информацию в виде генетического кода, состоящего из последовательности нуклеотидов. ДНК содержит информацию о структуре различных видов РНК и белков.

Хромосомы

Хромосомы— нуклеопротеидные структуры клетки, в которых сосредоточена большая часть наследственной информации и которые предназначены для её хранения, реализации и передачи. Хромосомы чётко различимы в световом микроскопе только в период митоза или мейоза. Набор всех хромосом клетки, называемый кариотипом.

Хромосома образуется из единственной и чрезвычайно длинной молекулы ДНК, которая содержит группу множества генов. Комплекс белков, связанных с ДНК, образует хроматин.

Хроматин — нуклеопротеид, составляющий основу хромосом, находится внутри ядра клеток эукариот и входит в состав нуклеоида у прокариот.

Именно в составе хроматина происходит реализация генетической информации, а также репликация и репарация ДНК.

Строение хромосомы лучше всего видно в метафазе митоза. Она представляет собой палочковидную структуру и состоит из двух сестринских хроматид, удерживаемых центромерой в области первичной перетяжки.

Под микроскопом видно, что хромосомы имеют поперечные полосы, которые чередуются в различных хромосомах по-разному. Распознают пары хромосом, учитывая распределение светлых и темных полос (чередование АТ и ГЦ — пар). Поперечной исчерченностью обладают хромосомы представителей разных видов. У родственных видов, например, у человека и шимпанзе, сходный характер чередования полос в хромосомах.

Генов, кодирующих различные признаки, у любого организма очень много. Так, по приблизительным подсчетам, у человека около 120 тыс. генов, а видов хромосом всего 23. Все это огромное количество генов размещается в этих хромосомах.

Число хромосом и их видовое постоянство

Каждый вид растений и животных в норме имеет строго определенное и постоянное число хромосом, которые могут различаться по размерам и форме. Поэтому можно сказать, что число хромосом и их морфологические особенности являются характерным признаком для данного вида. Эта особенность известна как видовое постоянство числа хромосом.

Число хромосом в одной клетке у разных видов: горилла – 48, макака – 42, кошка – 38, собака – 78, корова – 120, ёж -96, горох – 14, береза – 84, лук – 16, пшеница – 42. Наименьшее число у муравья – 2, наибольшее у одного из видов папоротника – 1260 хромосом на клетку.

В кариотипе человека 46 хромосом — 22 пары аутосом и одна пара половых хромосом. Мужчины гетерогаметны (половые хромосомы XY), а женщины гомогаметны (половые хромосомы XX).

 Y-хромосома отличается от Х-хромосомы отсутствием некоторых аллелей. Например, в Y-хромосоме нет аллеля свертываемости крови.

В результате гемофилией болеют, как правило, только мальчики.

Хромосомы одной пары называются гомологичными. Гомологичные хромосомы в одинаковых локусах (местах расположения) несут аллельные гены (гены, отвечающие за один признак).

Хромосомная теория наследственности

Хромосомная теория наследственности создана выдающимся американским генетиком Томасом Морганом (1866—1945):

  1. ген представляет собой участок хромосомы. Хромосомы, таким образом, представляют собой группы сцепления генов.
  2. аллельные гены расположены в строго определенных местах (локусах) гомологических хромосом.
  3. гены располагаются в хромосомах линейно, т. е. друг за другом.
  4. в процессе образования гамет между гомологичными хромосомами происходит конъюгация, в результате которой они могут обмениваться аллельными генами, т.е. может происходить кроссинговер. Гены одной хромосомы не наследуются сцепленно.

Явление кроссинговера помогло ученым установить расположение каждого гена в хромосоме, создать генетические карты хромосом (хромосомные карты). Вероятность расхождения двух генов по разным хромосомам в процессе кроссинговера зависит от расстояния между ними в хромосоме.

К настоящему времени при помощи подсчета кроссинговеров и других, более современных методов построены генетические карты хромосом многих видов живых существ; гороха, томата, дрозофилы, мыши. Кроме того, успешно продолжается работа по составлению генетических карт хромосом человека, что может помочь в борьбе с различными неизлечимыми пока болезнями.

Это конспект биологии для 10-11 классов по теме «Хромосомы: строение, функции. Число хромосом». Выберите дальнейшее действие:

Источник: https://uchitel.pro/%D1%85%D1%80%D0%BE%D0%BC%D0%BE%D1%81%D0%BE%D0%BC%D1%8B/

Жизненный цикл клетки. Митоз. Мейоз

Хроматиды это две субъединицы хромосомы

Жизненный цикл клетки = клеточный цикл – промежуток времени от деления материнской клетки до непосредственного деления клетки или ее гибели.

За это время клетка успевает пройти стадию дифференцировки. Клетки при «рождении» обладают свойством тотипотентности, то есть у них есть разные пути развития и перспектива выполнять разные функции, иначе это называется дифференцировкой. Клетка растет, выполняет свою работу в зависимости от типа, а затем либо делится, либо погибает.

Клеточная смерть

Существует два пути конца существования клетки:

  1. Апоптоз – запрограммированная клеточная смерть. Клетка «понимает» благодаря клеточным сигналам, что ее время пришло. Возможно, она была повреждена или на это есть другие причины. Хроматин сильно конденсируются, цитоплазма и мембранные структуры ужимаются, затем все полезное, что есть в клетке распределяется между соседними клетками ткани. Таким образом, клетка не губит никого рядом и даже приносит пользу, отдавая свои ресурсы другим клеткам, которые являются жизнеспособными. Никакого воспаления не возникает. Клетки сближаются, тем самым закрывая пробел.
  2. Некроз – гибель клеток и тканей. Некроз возникает тогда, когда клетка повреждена очень сильно или условия ее существования крайне поменялись. Тога у клетки нет другого выхода, кроме как некроз. В отличии от апоптоза, все внутри клетки повреждается, а не ужимается и сохраняется для соседей. Объемы клетки увеличиваются, она разбухает, лизируется («лизис» — расщепление, поэтому лизосомы так называются) изнутри. Происходит разрыв плазматической мембраны и продукты клеточного распада высвобождаются в межклеточное пространство, что пагубно влияет на соседние клетки. В них тоже начинается некроз или апоптоз, что приводит не просто к смерти отдельных клеток, а к смерти части ткани. Происходит воспалительный процесс, в результате чего сосуды расширяются, а лейкоциты мигрируют в место повреждения.

Апоптоз и некроз

Интерфаза

1.G1 – период (постмитотический или пресинтетический период)

Начинается сразу после образования клетки в результате митоза материнской клетки. В клетке увеличивается содержание цитоплазматических белков, следовательно, размеры клетки увеличиваются до размеров материнской клетки.

В эту фазу клетка принимает решение: вступать в митоз или не делиться. Момент принятия решения называется точкой рестрикции.

Фазы интерфазы

2.S – период (синтетический период)

В ядре удваивается ДНК, кроме центромерных участков. Удваиваются хромосомные белки.

В цитоплазме удваиваются центриоли.

К концу S – фазы клетка тетраплоидна (4n) по ДНК.

3.G2 – период (постсинтетический или премитотический период)

Происходит синтез других белков, необходимых для митоза, в том числе, тубулина, из которого формируются трубочки веретена деления.

Все деление клетки, включая митоз, занимает примерно один сутки, притом на пресинтетическую фазу (G1) около 9 часов, а синтетическую (S) — 10 часов, постсинтетическую (G2) – 4,5 часа, а непосредственно на митотическое деление – всего полчаса.

Митоз

Митоз – непрямое деление клетки, в результате которого образуются 2 дочерние клетки, полностью идентичные материнской клетке.

Митоз. Фотографии
 

1.Профаза

В ядре конденсируются хромосомы, каждая из них содержит по 2 хроматиды, что является результатом репликации в S – периоде.

Синтез РНК прекращается, исчезают ядрышки, постепенно разрушается ядерная оболочка. Ядерные мембраны распадаются на маленькие пузырьки.

В цитоплазме: ЭПС и аппарат Гольджи тоже распадаются на пузырьки – везикулы.

Пары центриолей постепенно расходятся к полюсам клетки, начинает формироваться веретено деления.

2.Метафаза

Хромосомы достигают максимальной степени конденсации и выстраиваются на экваторе клетки, то есть по центру, образуя метафазную пластинку.

Связь между сестринскими хроматидами начинает разрушаться.

Завершается формирование веретена деления.

3.Анафаза

Хроматиды сохраняют максимальную степень конденсации, но теряют связь друг с другом. Они начинают расходиться к полюсам клетки.

Хроматиды каждой хромосомы расходятся к противоположным полюсам.

4.Телофаза

Дочерние хромосомы деспирализуются (раскручиваются) у полюсов клетки. Начинается синтез белка.

Формируются ядрышки и ядро, этот процесс называется кариокинезом («карио» — ядро, «кинезис» — формирование.)

Веретено деления распадается.

Начинается цитокинез: по центру клетки образуется перетяжка, клетка разделяется на две, так между дочерними клетками распределяется цитоплазма.

После цитокинеза в клетках восстанавливается аппарат Гольджи и ЭПС.

Мейоз

Мейоз

Мейоз – редукционное деление, при котором число хромосом в дочерних становится гаплоидным. Так сохраняется постоянство числа хромосом при половом размножении.

Мейоз напоминает два митоза, но с некоторыми правками:

  1. Интерфаза у мейоза очень маленькая, а перед вторым делением практически отсутствует.
  2. В профазе I происходят конъюгация — сближение гомологичных хромосом и кроссинговер – обмен гомологичными участками хромосомы.
  3. В анафазе I к полюсам расходятся не сестринские хроматиды, а сестринские хромосомы.
  4. В телофазу I в 2х дочерних клетках не однохроматидные хромосомы, а двухроматидные.
  5. В интерфазе II ДНК не удваивается.
  6. Далее – снова деление, которое происходит в двух дочерних клетках, образовавшихся после первого деления. В телофазу II образуются клетки с гаплоидным набором ДНК.

Источник: https://spadilo.ru/zhiznennyj-cikl-kletki-mitoz-mejoz/

Разница между хромосомой и хроматидой

Хроматиды это две субъединицы хромосомы

ДНК несет генетическую информацию человека через его потомство. ДНК существует в двухцепочечной структуре внутри ядра клетки. Обе эти цепи ДНК сворачиваются вместе, образуя двойную спираль.

Хромосомы

ДНК несет генетическую информацию человека через его потомство. ДНК существует в двухцепочечной структуре внутри ядра клетки. Обе эти цепи ДНК сворачиваются вместе, образуя двойную спираль.

Хромосомы представляют собой нитевидные структуры, которые состоят из плотно свернутой двухцепочечной молекулы ДНК вокруг белков гистона; Хроматид относится к любой из двух нитевидных цепей, которые хромосома делит в продольном направлении во время деления клетки.

ключевое отличие между хромосомой и хроматидой находится их структура; хромосома имеет наиболее конденсированную структуру ДНК, тогда как хроматида имеет развернутую конденсированную структуру ДНК.

Эта статья изучает,

1. Что такое хромосома
– Определение, характеристики, классификации
2. Что такое хроматид
– определение, характеристики
3. В чем разница между хромосомой и хроматидой

Что такое хромосома

Хромосома – это структура, в которой ДНК упакована в свою сильно конденсированную форму. Он состоит из длинных цепей ДНК, которые связаны с белками. Большинство прокариот содержат свободно плавающую одиночную круговую хромосому. Он расположен у нуклеоида.

Прокариотические хромосомы не содержат интронов. Их гены выражены в виде групп, называемых оперонами. Прокариоты состоят из гистоноподобных белков, связанных с их ДНК. Помимо этого, бактерии содержат внехромосомные элементы, называемые плазмидами.

У эукариот хромосомы расположены в ядре, которое окружено отдельной мембраной. ДНК плотно наматывается на гистоновые белки. Нити ДНК имеют длину около 150-200 и дважды обертываются вокруг ядра, состоящего из восьми гистоновых белков. Структура называется нуклеосомой.

Эта обмотка обеспечивает структурную поддержку и позволяет контролировать активность генов.

У людей обнаружено 46 отдельных хромосом: 22 пары аутосом и две половые хромосомы. Функциональная хромосома имеет источник репликации, центромер и теломер. Четыре типа хромосом могут быть идентифицированы на основе положения центромеры.

Это телоцентрические, акроцентрические, субметацентрические и метацентрические хромосомы. Ядерное деление может быть остановлено в метафазе для изучения хромосом. Процесс, в котором выявляются аномалии хромосом, известен как кариотипирование.

Рисунок 1: Спектральный кариотип

Что такое хроматид

Хромосома состоит из одной молекулы ДНК. Во время S-фазы клетки ДНК удваивается в количестве, чтобы войти в деление клетки. Новая копия цепи ДНК формируется на основе генетической информации, которую несет существующая цепь. Тем не менее, количество хромосом в клетке остается неизменным.

Таким образом, каждая хромосома содержит две копии цепей ДНК. Одна из цепей ДНК в хромосоме называется хроматидой. Следовательно, хроматида представляет собой одну цепь ДНК. Он имеет нитевидную структуру и состоит из хроматиновых волокон.

ДНК оборачивается белками, называемыми гистонами, и оборачивается, образуя хроматидные волокна.

Две хроматиды, найденные в хромосоме, могут быть идентифицированы как сестринская пара хроматид. Сестра хроматид пары соединены центромером. Сестринские хроматиды отделяются во время анафазы. Анафаза является третьей стадией М-фазы клеточного цикла.

Хроматиды находятся в наиболее конденсированном состоянии в анафазе. Отделенные сестринские хроматиды тогда известны как дочерние хромосомы, Сестринские хроматиды идентичны в информации, которую они несут. Поэтому сестринские хроматиды считаются гомозиготными.

Однако мутации могут возникать во время репликации. Таким образом, мутация во вновь образованной цепи делает сестринские хроматиды гетерозиготными. Пара материнских и отцовских гомологичных хромосом при половом размножении.

Этот вид пары хроматид называется не сестринские хроматиды.   

Рисунок 2: Макроструктура ДНК

сгущение

Хромосома: ДНК сгущается в 10 000 раз, образуя хромосому. Таким образом, хромосома является наиболее конденсированной формой ДНК

Хроматид: ДНК сгущается в 50 раз с образованием хроматиды. Таким образом, хроматида менее конденсирована, чем хромосома.

содержание

Хромосома: Хромосома состоит из одной двухцепочечной молекулы ДНК.

Хроматид: Хроматида состоит из двух нитей ДНК, соединенных их центромерой.

Состав

Хромосома: Хромосома представляет собой тонкую лентоподобную структуру.

Хроматид: Хроматид представляет собой тонкую и длинную волокнистую структуру.

Генетический материал

Хромосома: Гомологичные хромосомы не идентичны. Они могут иметь разные аллели одного и того же гена.

Хроматид: Гомологичные сестринские хроматиды идентичны.

стадия

Хромосома: Хромосомы появляются в М фазе.

Хроматид: Хроматиды появляются в интерфазе.

Функция:

Хромосома: Хромосомы участвуют в распространении генетического материала.

Хроматид: Хроматиды участвуют в обмене веществ и других активностях клетки.

Заключение

Хромосома состоит из одной молекулы ДНК, тогда как хроматида состоит из двух идентичных цепей ДНК, соединенных центромерой. Хромосомы обычно участвуют в распределении генетического материала в ядерном отделе.

Хроматиды участвуют в обмене веществ и регуляции экспрессии генов. Тем не менее, ДНК конденсирована в хромосоме 10000 раз, а сама в 50 раз конденсирована в хроматиде.

Таким образом, ключевое различие между хромосомой и хроматидой заключается в уровне конденсации.

Ссылка:
1. Хиггинс Н.П. Структура хромосом. ЭНЦИКЛОПЕДИЯ ЖИЗНЕННЫХ НАУК. 2015

Источник: https://ru.strephonsays.com/difference-between-chromosome-and-chromatid

Все о медицине
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: