Хранение углеводов образование секреторных пузырьков

Комплекс Гольджи: строение и особенности

Хранение углеводов образование секреторных пузырьков

Комплекс Гольджи: строение и особенности

Локализация

Образование КГ

Функции комплекса Гольджи

Комплекс Гольджи относится к составляющим метаболической системы цитоплазмы. Это внутренний сетчатый аппарат, наделенный особыми функциями.

КГ участвует в процессе выделения и формирования мембранных структур клеток. При использовании оптического микроскопа комплекс Гольджи имеет вид сетки или изогнутых палочкообразных телец, расположенных вокруг ядра.

Электронный микроскоп позволяет увидеть несколько вариантов органеллы:

трубчатое образование, состоящее из элементов диаметром 20-50 нм;

многоярусное образование, сформированное из собранных в плотные пучки диктиосом (в основном сплющенных дискообразных элементов 5-6, расстояние между ними составляет 14-25 нм, внутреннее пространство – 5-20 нм);

совокупность везикул (пузырьки мелкие и крупные, их размеры составляют 20-30 и около 2000 нм соответственно).

В основе аппарата Гольджи присутствуют гладкие мембраны. Иногда АГ выглядит как колпак, его структура зернисто-сетчатая. Комплекс Гольджи содержится в клетках, из которых сформированы растения и животные, наиболее развит он в секреторных клетках, отчетливо просматривается в нервных клетках.

Внутри КГ представлен матриксом, в котором содержатся специфические ферменты. Всего выделяют две зоны:

1. Зона формирования – участок, куда поступает материал с эндоплазматической сети (в данном процессе участвуют везикулы).

2. Зона созревания – участок, на котором образуются секреторные мешочки и выделяется секрет. Накопление секрета происходит на терминальных участках комплекса, где через секреторные везикулы он покидает пространство клеток. 

Локализация

Если рассматривать аполярные клетки, АГ окружает ядро. В секреторных клетках его расположение иное – аппарат находится в промежутке, образованном между апикальным полюсом и ядром. Поверхности КГ следующие:

формировательная цис-поверхность, которую определяют как незрелую;

функциональная транс-поверхность, другими словами зрелая поверхность.

Незрелая поверхность столбика Гольджи, который расположен в направлении ядра, выпуклая. Отмечается прилегание к гранулярной эндоплазматической сети. К составляющим столбика относятся круглые пузырьки небольших размеров, которые называют промежуточными. Зрелая поверхность наоборот вогнутая, направленная к верхней точке клетки. Для такой поверхности характерно наличие крупных пузырьков.

Образование КГ

Формируются мембраны в гранулярной эндоплазматической сети, прилегающей к АГ. На соседних участках ЭПС происходит потеря рибосом, от которых отходят небольшие везикулы, названные транспортными (промежуточными). После поступления к незрелой поверхности столбика Гольджи они соединяются с первым мешочком.

На другой поверхности КГ присутствует мешочек неправильной формы с просекреторными гранулами, процесс отпочковывания которых непрерывный и завершается  преобразованием в пузырьки с секреторным содержимым.

По мере превращения мембран функциональной поверхности в секреторные везикулы в эндоплазматической сетке образуются дополнительные мешочки противоположной поверхности .

Функции комплекса Гольджи

АГ необходим для выведения веществ, синтезированных клетками, в этом заключается его основная функция. Образованные вещества попадают в пузырьки сетчатого аппарата через эндоплазматическую сеть, где накапливаются и выводятся или используются клетками. В комплексе присутствуют и другие вещества, проникшие извне. 

В комплексах растений присутствуют полисахаридный материал, формирующий целлюлозную оболочку клеток, и ферменты, образовавшиеся  результате синтеза полисахаридов. Кроме того, АГ способствует получению веществ, необходимых для формирования клеточной мембраны. Функции комплекса Гольджи следующие:

накопление макромолекул  эндоплазматической сети с их последующей модификацией;

синтез и видоизменение гликопротеидов, углеводов;

образование секрета со сложным составом и везикул в результате конденсации секреторного материала;

образование пероксисом;

процессы расщепления полипептидов, образования белков со сложной структурой, модификации белков путем соединения химических веществ и полипептида;

участие в образовании и обновлении мембранных структур путем формирования везикул, сливающихся с мембраной клеток;

формирование зернистых структур и лизосом в составе лейкоцитов.

Аппарат Гольджи является главным регулятором движения макромолекул в клетке. Он собирает их в транспортные везикулы, распределяет по клетке и за её пределы.

Белковое и, частично, углеводное содержимое КГ поступает с гранулярной эндоплазматической сетки, где оно синтезируется. Основная часть углеводного компонента образуется в мешочках комплекса с участием ферментов гликозилтрансфераз, которые находятся в мембранах мешочков.

В комплексе Гольджи окончательно формируются клеточные секреты, содержащие гликопротеиды и гликозаминогликаны.

В КГ созревают секреторные гранулы, которые переходят в пузырьки, и перемещение этих пузырьков в направлении плазмалеммы Окончательный этап секреции – это выталкивание сформированных (зрелых) везикул за пределы клетки.

Выведение секреторных включений из клетки осуществляется путём вмонтирования мембран пузырька в плазмалемму и выделение секреторных продуктов за пределы клетки. В процессе перемещения секреторных пузырьков к апикальному полюсу клетки мембраны их утолщаются из начальных 5-7 нм, достигая толщины плазмалеммы 7-10 нм.

От размеров КГ зависит активность клеток. Для секреторных клеточных структур характерны столбики крупных размеров. Если структуры несекреторные, число мешочков минимальное.

Источник: https://sciterm.ru/spravochnik/kompleks-goldzhi-stroenie-i-osobennosti/

Аппарат (комплекс) Гольджи

Хранение углеводов образование секреторных пузырьков

Комплекс Гольджи (КГ), или внутренний сетчатый аппарат, – это особенная часть метаболической системы цитоплазмы, участвующая в процессе выделения и формирования мембранных структур клетки.

КГ видно в оптический микроскоп как сетку или изогнутые палочкообразные тельца, лежащие вокруг ядра.

Под электронным микроскопом выявлено, что эта органелла представлена тремя видами образований:

  • многоярусной системой сплющенных дискообразных цистерн (диктиосомы), плотно расположенных пучками на расстоянии 14-25 нм с внутренним пространством 5-20 нм (чаще всего по 5-6 мешочков в комплексе);
  • системой трубочек диаметром 20-50 нм;
  • системой пузырьков (везикул) – размеры мелких пузырьков – 20-30 нм, больших – до 2000 нм.

Все компоненты аппарата Гольджи образованы гладкими мембранами.

Замечание 1

Изредка АГ имеет зернисто – сетчатую структуру и расположен около ядра в виде колпачка.

АГ встречается во всех клетках растений и животных.

Замечание 2

Аппарат Гольджи значительно развит в секреторных клетках. Особенно хорошо он виден в нервных клетках.

  • Курсовая работа 410 руб.
  • Реферат 260 руб.
  • Контрольная работа 240 руб.

Внутреннее межмембранное пространство заполнено матриксом, который содержит специфические ферменты.

Аппарат Гольджи имеет две зоны:

  • зону формирования, куда с помощью везикул поступает материал, который синтезируется в эндоплазматической сети;
  • зону созревания, где формируется секрет и секреторные мешочки. Этот секрет накопляется на терминальных участках АГ, откуда отпочковываются секреторные везикулы. Как правило, такие везикулы переносят секрет за пределы клетки.

В аполярных клетках (например, в нервных) КГ расположен вокруг ядра, в секреторных он занимает место между ядром и апикальным полюсом.

Комплекс мешочков Гольджи имеет две поверхности:

формировательную (незрелую или регенераторную) цис-поверхность (от лат. Сis – с этой стороны);функциональную (зрелую) – транс-поверхность (от лат. Trans – через, за).

Столбик Гольджи своей выпуклой формировательной поверхностью обращён в сторону ядра, прилегает к гранулярной эндоплазматической сети и содержит мелкие круглые пузырьки, названные промежуточными. Зрелая вогнутая поверхность столбика мешочков обращена к вершине (апикальному полюсу) клетки и оканчивается большими пузырьками.

Образование комплекса Гольджи

Мембраны КГ синтезируются гранулярной эндоплазматической сетью, которая прилегает к комплексу. Соседние с ним участки ЭПС теряют рибосомы, от них отпочковываются мелкие, так называемые, транспортные, или промежуточные везикулы. Они перемещаются к формировательной поверхности столбика Гольджи и сливаются с первым её мешочком.

На противоположной (зрелой) поверхности комплекса Гольджи находится мешочек неправильной формы. Его расширение – просекреторные гранулы (конденсирующие вакуоли) – непрерывно отпочковываюся и превращаются в пузырьки, заполненные секретом – секреторные гранулы.

Таким образом, в меру использования мембран зрелой поверхности комплекса на секреторные везикулы, мешочки формировательной поверхности пополняются за счёт эндоплазматической сетки.

Функции комплекса Гольджи

Основная функция аппарата Гольджи – выведение синтезированных клеткой веществ. Эти вещества транспортируются по клетках эндоплазматической сети и накопляются в пузырьках сетчатого аппарата. Потом они или выводятся во внешнюю среду или же клетка использует их в процессе жизнедеятельности.

В комплексе так же концентрируются некоторые вещества (например, красители), которые поступают в клетку извне и должны быть выведены из неё.

В растительных клетках комплекс содержит ферменты синтеза полисахаридов и сам полисахаридный материал, который используется для построения целлюлозной оболочки клетки.

Кроме того, КГ синтезирует те химические вещества, которые образуют клеточную мембрану.

В общем, аппарат Гольджи выполняет такие функции:

  1. накопление и модификация макромолекул, которые синтезировались в эндоплазматической сети;
  2. образование сложных секретов и секреторных везикул путём конденсации секреторного продукта;
  3. синтез и модификация углеводов и гликопротеидов (образование гликокаликса, слизи);
  4. модификация белков – добавление к полипептиду различных химических образований (фосфатных – фосфориллирование, карбоксильных – карбоксилирование), формирование сложных белков (липопротеидов, гликопротеидов, мукопротеидов) и расщепление полипептидов;
  5. имеет важное значение для формирования, обновления цитоплазматической мембраны и других мембранных образований благодаря образованию мембранных везикул, которые в дальнейшем сливаются с клеточной мембраной;
  6. образование лизосом и специфической зернистости в лейкоцитах;
  7. образование пероксисом.

Замечание 3

Аппарат Гольджи является главным регулятором движения макромолекул в клетке. Он собирает их в транспортные везикулы, распределяет по клетке и за её пределы.

Белковое и, частично, углеводное содержимое КГ поступает с гранулярной эндоплазматической сетки, где оно синтезируется. Основная часть углеводного компонента образуется в мешочках комплекса с участием ферментов гликозилтрансфераз, которые находятся в мембранах мешочков.

В комплексе Гольджи окончательно формируются клеточные секреты, содержащие гликопротеиды и гликозаминогликаны.

В КГ созревают секреторные гранулы, которые переходят в пузырьки, и перемещение этих пузырьков в направлении плазмалеммы Окончательный этап секреции – это выталкивание сформированных (зрелых) везикул за пределы клетки.

Выведение секреторных включений из клетки осуществляется путём вмонтирования мембран пузырька в плазмалемму и выделение секреторных продуктов за пределы клетки. В процессе перемещения секреторных пузырьков к апикальному полюсу клетки мембраны их утолщаются из начальных 5-7 нм, достигая толщины плазмалеммы 7-10 нм.

Замечание 4

Существует взаимозависимость между активностью клетки и размерами комплекса Гольджи – секреторные клетки имеют большие столбики КГ , тогда как несекреторные содержат небольшое количество мешочков комплекса.

Источник: https://spravochnick.ru/biologiya/citologiya_-_nauka_o_stroenii_i_funkcii_kletok/apparat_kompleks_goldzhi/

Углеводы | Университетская клиника

Хранение углеводов образование секреторных пузырьков

Углеводы – это органические соединения, которые широко распространены в природе как в животном, так и в растительном мире. Они действуют как резервный и поддерживающий материал в организме. Углеводы состоят из углерода, водорода и кислорода. 

Сахара

Вещества, известные как «сахара» и «сахариды», характеризуются сладким вкусом. Они легко растворяются в воде. Такие углеводы содержат несколько гидроксильных групп и по крайней мере одну карбонильную группу (альдегид или кетон).

Они синтезируются в основном растениями из углекислого газа и воды в процессе фотосинтеза, в котором исходным материалом является вода, поступающая через корневую систему из почвы, и углекислый газ (CO 2), присутствующий в воздухе.

 

Животные могут синтезировать некоторые углеводы из жиров и белков, но большинство животных углеводов имеют растительное происхождение. Углеводы – один из основных источников энергии (сжигание 1 г дает человеку около 4 ккал).

Углеводы, содержащиеся в пище человека, делятся на простые и сложные сахара.

Простые сахара

Простые сахара (моносахариды) включают: глюкозу (виноградный сахар), фруктозу (фруктовый сахар) и галактозу – она входит в состав дисахаридов, например, лактозы.

Глюкозу называют виноградным сахаром и тростниковым сахаром. Обычно такой сахар содержится в растительных продуктах, фруктовых соках – наиболее распространенный источник – виноградный сок. глюкозы во фруктах и ​​овощах увеличивается при созревании и снижается при длительном хранении. 

Виноградный сок

Глюкоза также содержится в картофеле и меде, она входит в состав сахарозы (сахароза, среди прочего, подслащивает напитки), крахмала и целлюлозы. Важной особенностью глюкозы является ферментация под действием дрожжей, используемых для производства вин и более крепких спиртов.

Фруктоза также присутствует во фруктах и ​​меде, который является сахаром намного более сладким, чем другие углеводы. Поэтому сиропы фруктозы, сделанные из кукурузного сиропа, в настоящее время широко используются в пищевой промышленности, в производстве напитков, десертов и т. д. 

Фруктоза

Наблюдаемое в настоящее время увеличение потребления фруктозы, из-за ее использования в производстве сладких продуктов, рассматривается как причина увеличения массы тела у детей и взрослых. 

Метаболический эффект фруктозы значительно отличается от метаболического эффекта глюкозы, что означает, что она не увеличивает выработку инсулина – гормона поджелудочной железы, и лептина – гормона сытости, секретируемого в основном жировой тканью. С другой стороны, фруктоза увеличивает синтез триглицеридов в печени, что способствует гипертриглицеридемии (повышенная концентрация триглицеридов в сыворотке крови).

Помимо моносахаридов, пища также содержит дисахариды, которые состоят из двух простых молекул сахара (сахарозы, лактозы и мальтозы).

Сахароза, обычно называемая «сахаром», представляет собой свекольный или тростниковый сахар, состоящий из молекул фруктозы и глюкозы.

Сахароза

Лактоза (молочный сахар) состоит из галактозы и глюкозы и, как следует из названия, в большем количестве присутствует в молоке.

Мальтоза – это сахар, состоящий из двух молекул глюкозы, в большом количестве он присутствует в солоде – «солодовый сахар» (в проросших зернах, особенно в ячмене, богатых ферментами, гидролизующими крахмал).

Его используют для производства детского питания, диетических добавок и конфет, а также при пивоварении, дистилляции и выпечке.

Сложные сахара

Сложные сахара, то есть полисахариды, включают: крахмал, содержащийся в качестве резервного вещества в картофеле и зерновых продуктах, в корнеплодах и фруктах, и гликоген – резервный материал в тканях животных.

Крахмал картофельный

Крахмал – это трудноусвояемый сахар, поэтому продукты, содержащие этот полисахарид, перед употреблением следует подвергать термической обработке – варке, запеканию, жарке, которая расщепляет крахмал на более простые сахара (декстрины), растворимые в воде и легче усваиваемые.

Гликоген содержится в основном в мышцах и печени животных. В организме он может быть синтезирован из простых сахаров, органических кислот и частей аминокислот, не содержащих азот, и хранится в печени, мышцах, почках, сердечной мышце, мозге и тромбоцитах. В организме человека примерно 350–450 г гликогена.

Полисахариды также включают пищевые волокна, в том числе целлюлозу, лигнин, гемицеллюлозы, пектины и другие соединения.

Эти вещества не перевариваются в пищеварительном тракте человека, а это означает, что они не усваиваются и, следовательно, не превращаются в питательные вещества и энергию.

Их особенность в том, что они раздражают стенки кишечника и стимулируют его перистальтические движения, что ускоряет выведение каловых масс. Это предотвращает запоры, дивертикулез кишечника и воспаления в кишечнике, геморрой и рак толстой кишки. 

Пища, богатая пищевыми волокнами, имеет большой объем, поэтому она обладает сытным эффектом – усиливает чувство сытости, например, после употребления большого количества фруктов и овощей или темного хлеба. 

Пища, богатая пищевыми волокнами

Пищевые волокна снижают концентрацию глюкозы и холестерина в сыворотке крови, поэтому рекомендуется употреблять их в количестве 20–40 г/сут, запивая большим количеством воды – 1,5–2,0 л в сутки. Вода необходима для набухания волокон в кишечнике. 

Много пищевых волокон содержится в отрубях и зерновых продуктах, полученных из цельного зерна, бобовых, капусте, салате, перце и сухофруктах.

Переваривание углеводов

Переваривание углеводов, особенно крахмала, начинается в полости рта под воздействием фермента, содержащегося в слюне – α-амилазы слюны. Процесс идет только при щелочном pH, оптимум pH 6,0–7,0). Здесь крахмал гидролизуется до мальтозы, мальтотриозы и декстринов. 

Попадая в желудок, пища приобретает кислую среду, в которой амилаза слюны инактивируется. В желудке происходит только частичный гидролиз дисахаридов сахарозы и мальтозы. Дальнейшее переваривание углеводов происходит в тонком кишечнике. 

Гидролиз дисахаридов

В двенадцатиперстной кишке пищеварение происходит при участии α-амилазы поджелудочной железы – углеводы гидролизуются до декстринов и дисахаридов. Кишечный сок содержит ферменты: глюкоамилазу и гликозидазы, а также лактазу, сахаразу и мальтазу, которые переваривают углеводы в простые сахара. 

Около 50% глюкозы уже всасывается в двенадцатиперстной кишке, а остальная часть из тощей кишки попадает в кровь в воротной вене. Поглощенные простые сахара попадают в печень через кровоток. Там большая часть гексоз превращается в глюкозу – часть попадает в кровоток, часть окисляется в печени, а часть превращается в гликоген, сохраняясь в качестве резервного материала.

Роль углеводов в организме человека

Углеводы играют в организме человека множество важных функций:

  • Являются основным источником энергии для тела (сжигание 1 г дает 4 ккал). Глюкоза является единственным источником энергии для мозга, нервного ядра и эритроцитов и используется в качестве энергетического субстрата мышечной тканью, печенью, сердцем, почками и кишечником. Углеводы обеспечивают около 50-60% энергии в повседневной пище и придают пище органолептические свойства.
  • Необходимы для окисления жирных кислот до СО2 и воды (в случае недостаточного количества усвояемых углеводов –

Источник: https://unclinic.ru/uglevody/

Cell Biology.ru

Хранение углеводов образование секреторных пузырьков
Аппарат Гольджи

Эндоплазматический ретикулум, плазматическая мембрана и аппарат Гольджи составляют единую мембранную систему клетки, в пределах которой происходят процессы обмена белками и липидами с помощью направленного и регулируемого внутриклеточного мембранного транспорта.
Каждая из мембранных органелл характеризуется уникальным составом белков и липидов.

Строение АГ

АГ состоит из группы плоских мембранный мешков – цистерны, собранные в стопки – диктиосомы (~5-10 цистерн, у низших эукариот >30). Число диктиосом в разных клетках от 1 до ~500.

Отдельные цистерны диктиосомы переменной толщины – в центре ее мембраны сближены – просвет 25 нм, на переферии образуются расширения – ампулы ширина которых не постоянна. От ампул отшнуровываются ~50нм-1мкм пузырьки связанные с цистернами сетью трубочек.

У многоклеточных организмов АГ состоит из стопок цистерн связанных между собой в единую мембранную систему. АГ представляет собой полусферу, основание которой обращено к ядру. АГ дрожжей представлен изолированными единичными цистернами, окруженными мелкими пузырьками, тубулярной сетью, секреторными везикулами и гранулами.

У мутантов дрожжей Sec7 и Sec14 наблюдается структура, напоминающая стопку цистерн клеток млекопитающих.

Для АГ характерна полярность его структур. Каждая стопка имеет два полюса: проксимальный полюс (формирующийся, цис-поверхность) и дистальный (зрелый,

транс-поверхность). Цис-полюс – сторона мембраны с которой сливаются пузырьки. Транс-полюс – сторона мембраны от которой пузырьки отпочковываются.

Пять функциональных компартментов АГ:

1. Промежуточные везикуло-тубулярные структуры (VTC или ERGIC – ER-Golgi intermediate compartment) 2. Цис-цистерна (cis) – цистерны расп ближе к ЭР: 3. Срединные (medial) цистерны – центральные цистерны 4. Транс-цистерна (trans) – наиболее удаленные от ЭР цистерны. 5. Тубулярная сеть, примыкающая к трансцистерне – транссеть Гольджи (TGN) Стопки цистерн изогнуты, так что вогнутая трансповерхность обращена к ядру. В среднем в АГ 3-8 цистерн, в активно секретирующих клеток может быть больше (в экзокринных клетках поджелудочной железы до 13). Каждая цистерна имеет цис и транс поверхности. Синтезированные белки, мембранные липиды, гликозилированные в ЭР, попадают в АГ через цис-полюс. Вещества через стопки передаются транспортнымипузырьками отделяющиеся от ампул. При прохождении белков или липидов через стопки Гольджи, они претерпевают серию посттрансляционных модификаций, включающих изменение N-связанных олигосахаридов:

цис: маннозидазаI подравнивает длинные маннозные цепи до М-5

промежуточный: N-ацетилглюкоэаминтрансферазаI переносит N-ацетилглюкозамин
транс: добавляются концевые сахара –остатки галактозы и сиаловая к-та.

Строение Аппарата Гольджи и схема транспорта.
Пять компанентов АГ и схема транспорта: промежуточный (ERGIC), цис, промежуточный, транс и транссеть Гольджи (TGN). 1.

Вход синтезированных белков, мембранных гликопротеинов и лизосомных ферментов в цистерну переходного ЭР, прилегающую к АГ и 2 – их выход из ЭР в пузырьках окаймленных COPI (антероградный транспорт).

3 – возможный транспорт карго от тубуло-везикулярныхкластеров к цис-цистерне АГ в пузырьках COPI; 3* – транспорт карго от более ранних к более поздним цистернам; 4 – возможный ретроградный везикулярный транспорт карго между цистернами АГ; 5 – возврат резидентных протеинов из АГ в tER с помощью пузырьков, окаймленных COPI (ретроградный транспорт); 6 и 6* – перенос лизосомных ферментов с помощью окаймленных клатрином пузырьков соответственно в ранние EE и поздние LE эндосомы; 7 – регулируемая секреция секреторных гранул; 8 – конститутивное встраивание мембранных белков в апикальную плазматическую мембрану ПМ; 9 – опосредованный рецептором эндоцитоз с помощью окаймленных клатрином пузырьков; 10 возвращение ряда рецепторов из ранних эндосом в плазматическую мембрану; 11 – транспорт лигандов из EE в LE и и лизосомы Ly; 12 – транспорт лигандов в неклатриновых пузырьках.

Функции АГ

1. Транспорт – через АГ проходят три группы белков: белки периплазматической мембраны, белки, предназначенныена экспорт из клетки, и лизосомные ферменты.

2. Cортировка для транспорта: сортировка для дольнейшего транспорта к органеллам, ПМ, эндосомам, секреторным пузырькам происходит в транс-комплексе Гольджи.

3. Секреция – секреция продуктов, синтезируемых в клетке.
3. Гликозилирование белков и липидов: гликозидазы удаляют остатки сахаров – дегликозилирование, гликозилтрансферазы прикрепляют сахара обратно на главную углеводную цепь – гликозилирование.В нем происходят гликозилирование олигосахаридных цепей белков и липидов, сульфатирование ряда ахаров и тирозиновых остатков белков, а также активация предшественников полипептидных гормонов и нейропептидов.
4. Синтез полисахаридов – многие полисахариды образуются в АГ в том числе пектин и гемицеллюлоза, образующие клеточные стенки растений и большинство гликозаминогликанов образующих межклеточный матрикс у животных

5. Сульфатирование – большинство сахаров, добавляемых к белковай сердцевине протеогликана, сульфатируются

6. Добавление маннозо-6-фосфата: М-6-P добавляется как направляюций сигнал к ферментам, предназначенным для лизосом.

ГЛИКОЗИЛИРОВАНИЕ
Большинство белков начинает гликозилироваться в шероховатом ЭР посредством добавления к растущей полипептидной цепи N-связанных олигосахаридов.

Если гликопротеин свернут в нужной конформации, он выходит из ЭР и направляется в АГ, где происходит его посттрансляционная модификация. В гликозилировании секретируемых продуктов принимают участие ферменты – гликозилтрансферазы.

Они участвуют в ремоделированиии Т-связанных боковых олигосахаридных цепей и добвлении О-связанных гликанов и олигосахаридных частей протеогликанов гликолипидов.В модификации олигосахаридов участвуют фрменты а-маннозидаза I и II, которые также являются резидентными белками АГ.

Кроме того в АГ происходит гликозилирование липидно-протеиновых мембранных доменнов, называемых рафтами.
Долихолфосфат
добавляет углеводный комплекс – 2GlcNAc-9-манноз-3-глюкозы к аспарагину растущего полипептида.

Терминальная глюкоза отщепляется в два этапа: глюкозидаза I отщепляет терминальный остаток глюкозы, глюкозидаза II удаляет еще два остатка глюкозы. Затем отщепляется манноза. На этом начальный этап процессинга углеводов в ЭР завершается и белки несущие олигосахаридный комплекс, поступают в АГ

В первых цистернах АГ удаляются еще три остатка маннозы. На этой стадии стержневой комплекс имеет еще 5 маннозных остатков. N-ацетилглюкозаминтрансфераза I добавляет один остаток N-ацетилглюкозамина GlcNAc. От образовавшегося комплекса отщепляется еще 3 остатка маннозы. Состоит теперь из двух молоекул GlcNAc-3-маннозо-1-GlcNAc является стержневой структурой, к которой гликозилтрансферезы добавляют другиеуглеводы. Каждая гликозилтрансфераза распознает развивающуюся углеводную структуру и добавляет к цепи свой собственный сахарид.

СЕКРЕЦИЯ
Схема секреции
:

Синтезированные в ЭР белки концентрируются в сайтах выхода переходного ЭР благодаря активности коатомерного комплекса COPII и сопутствующих компонентов и транспортируются в промежуточный между ЭР и АГ компартмент ERGIC, из которого они переходят в АГ в отпочковывающихся пузырьках, или по тубулярным структурам. Белки ковалентно модифицируются, проходя через цистерны АГ, на транс-поверхности АГ сортируются и отправляются к местам своего назначения. Секреция белков требует пассивного встраивания новых мембранных компонентов в плазматическую мембрану. Для восстановления баланса мембран служит контитутивный рецепторопосредованный эндоцитоз. Эндо и экзоцитозный пути переноса мембран имеют общие закономерности в направленности движения мембранных переносчиков к сооответствующей

мишени и в специфичности слияния и почкования. Основным местом встречи этих путей является АГ.

Источник: http://cellbiol.ru/book/kletka/apparat_goldzhi

Все о медицине
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: