Цитоскелет клетки строение и функции

Содержание
  1. Цитоскелет – это важная составляющая клетки. Строение и функции цитоскелета
  2. Общее понятие
  3. Строение
  4. Функции
  5. Эукариоты
  6. Прокариоты
  7. Заключение
  8. Характеристики, функции, структура и компоненты цитоскелета / биология
  9. Общие характеристики
  10. форма
  11. Движение и клеточные развязки
  12. Структура и компоненты
  13. Актиновые филаменты
  14. Актиновые филаментные функции
  15. Промежуточные нити
  16. Функция промежуточных нитей
  17. микротрубочки
  18. Функция микротрубочек
  19. В бактериях
  20. При раке
  21. ссылки
  22. Строение
  23. Эукариоты
  24. Заключение
  25. Цитоскелет
  26. Общий план строения филаментов цитоскелета
  27. Элементы цитоскелета эукариот
  28. Динамика элементов цитоскелета
  29. Нуклеация
  30. Полярность микротрубочек и микрофиламентов
  31. Гидролиз нуклеотидтрифосфатив
  32. 2.2. Клетка – единица строения, жизнедеятельности, роста и развития организмов
  33. Любой организм развивается из клетки.
  34. 1.Особенности строения клеток прокариот и эукариот
  35. 2. Клетки эукариот. Строение и функции
  36. 3. Сопоставление прокариотической и эукариотической клеток
  37. По способу питания и строению клеток выделяют  царства:

Цитоскелет – это важная составляющая клетки. Строение и функции цитоскелета

Цитоскелет клетки строение и функции
Образование 2 августа 2017

Вновь посвящая публикацию биологической тематике, поговорим об одной из важнейших в ней – цитоскелет (от греческого “цитос”, что означает “клетка”). Также рассмотрим строение и функции цитоскелета.

Общее понятие

Прежде чем говорить на эту тему, следует дать понятие цитоплазмы. Это внутренняя полужидкая среда клетки, которая ограничена цитоплазматической мембраной. В эту внутреннюю среду не входят ядро и вакуоли клетки.

А цитоскелет – это каркас клетки, который находится в цитоплазме клетки. Он есть в клетках эукариот (живые организмы, содержащие в клетках ядро). Является динамичной структурой, которая способна изменяться.

В некоторых источниках, рассматриваемых строение и функции цитоскелета, дается несколько иное, сформулированное другими словами определение. Он является опорно-двигательной системой клеток, которая образована белковыми нитчатыми структурами. Участвует в движении клетки.

Строение

Рассмотрим строение данной структуры, далее узнаем, какие функции выполняет цитоскелет.

Цитоскелет образовался за счет белков. В его структуре выделяется несколько систем, название которых происходит от основных структурных элементов, либо от основных белков, которые входят в состав данных систем.

Поскольку цитоскелет – это структура, то в ней выделяют три основные составляющие. Они играют важную роль в жизни и движении клеток.

Цитоскелет состоит из микротрубочек, промежуточных филаментов и микрофиламентов. Последние иначе называют актиновыми филаментами. Все они по своей природе нестабильны: постоянно собираются и разбираются. Таким образом, все компоненты имеют динамическое равновесие с белками, им соответствующими.

Микротрубочки цитоскелета, представляющие собой жесткую структуру, присутствуют в цитоплазме эукариотов, а также в ее выростах, которые называются жгутиками и ресничками. Их длина может варьироваться, некоторые достигают несколько микрометров в длину. Иногда микротрубочки объединяются с помощью ручек или мостиков.

Микрофиламенты состоят из актина – белка, похожего на тот, что входит в состав мышц. В их строении в малом количестве есть и другие белки. Главное отличие актиновых филаментов от микротрубочек состоит в том, что некоторых из них нельзя увидеть в световом микроскопе. В животных клетках они объединяются в сплетение под мембраной и, таким образом, связаны с ее белками.

Микрофиламенты животных и растительных клеток также взаимодействуют с белком миозином. При этом их система имеет способность к сокращению.

Промежуточные филаменты состоят из различных белков. Данный структурный компонент достаточно не изучен. Есть вероятность, что у растений он вообще отсутствует.

Также некоторые ученые считают, что промежуточные филаменты являются дополнением к микротрубочкам.

Точно доказано то, что при рзрушении системы микротрубочек филаменты перестраиваются, а при обратной процедуре влияние филаментов практически не сказывается на микротрубочках.

Функции

Говоря о строении и функциях цитоскелета, перечислим, каким именно образом он влияет на клетку.

Благодаря микрофиламентам, происходит движение белков вдоль мембраны цитоплазмы. Актин, содержащийся в них, принимает участие в мышечных сокращениях, фагоцитозе, движениях клетки, а также в процессе слияния сперматозоидов и яйцеклеток.

Микротрубочки активно участвуют в поддержании клеточной формы. Еще одна их функция – транспортная. Они переносят органеллы. Они могут выполнять механическую работу, куда входит перемещение митохондрий и ресничек. Особо важная роль принадлежит микротрубочкам в процессе клеточного деления.

Они направлены на создание или сохранение определенной клеточной асимметрии. Под определенным воздействием микротрубочки разрушаются. Это может привести к утрате данной асимметрии.

К функциям цитоскелета также относятся адаптация клетки ко внешнему воздействию, процессы эндо- и экзоцитоза.

Таким образом, мы рассмотрели, какие функции выполняет цитоскелет в живом организме.

Эукариоты

Между эукариотами и прокариотами существует определенная разница. Поэтому важно рассмотреть цитоскелет данных животных. Эукариоты (животные, имеющие в клетке ядро) имеют три типа филаментов.

Актиновые филаменты (иначе говоря, микрофиламенты) размещаются у мембраны клетки. Они принимают участие в межклеточном взаимодействии, а также передают сигналы.

Промежуточные филаменты – это наименее динамичная часть цитоскелета.

Микротрубочки являются полыми цилиндрами, они – очень динамичная структура.

Прокариоты

К прокариотам относятся одноклеточные организмы – бактерии и археи, которые не имеют сформированного ядра. Считалось, что прокариоты не имеют цитоскелета. Но с 2001-го года начались активные исследования их клеток. Были найдены гомологи (схожие, подобные) всех элементов эукариотного цитоскелета.

Ученые установили, что одна из белковых групп бактериального клеточного скелета не имеет аналогов среди эукариотов.

Заключение

Таким образом, мы рассмотрели строение и функции цитоскелета. Он играет исключительно важную роль в жизнедеятельности клетки, обеспечивая важнейшие ее процессы.

Все цитоскелетные компоненты взаимодействуют. Это подтверждается существованием прямых контактов микрофиламентов, промежуточных филаментов и микротрубочек.

Согласно современным представлениям, важнейшим звеном, которое объединяет различные клеточные части и осуществляет передачу данных, является именно цитоскелет.

Источник: .ru

Источник: https://monateka.com/article/241987/

Характеристики, функции, структура и компоненты цитоскелета / биология

Цитоскелет клетки строение и функции

цитоскелет Это клеточная структура, состоящая из нитей. Он рассредоточен по цитоплазме, и его функция в основном заключается в поддержке, чтобы поддерживать архитектуру и клеточную форму. Конструктивно он состоит из трех типов волокон, классифицированных по размеру.

Это актиновые волокна, промежуточные нити и микротрубочки. Каждый из них предоставляет определенное свойство сети. Внутренняя часть ячейки – это среда, в которой происходит перемещение и перемещение материалов. Цитоскелет опосредует эти внутриклеточные движения.

Например, органеллы – такие как митохондрии или аппарат Гольджи – статичны в клеточной среде; они движутся, используя цитоскелет в качестве пути.

Хотя цитоскелет явно преобладает у эукариотических организмов, аналогичная структура была отмечена у прокариот.

индекс

  • 1 Общая характеристика
  • 2 функции
    • 2.1 Форма
    • 2.2 Движение и клеточные узлы
  • 3 Структура и компоненты
    • 3.1 Нити актина
    • 3.2 Промежуточные нити
    • 3.3 Микротрубочки
  • 4 Другие последствия цитоскелета
    • 4.1 В бактериях
    • 4.2 При раке
  • 5 ссылок

Общие характеристики

Цитоскелет представляет собой чрезвычайно динамичную структуру, которая представляет собой «молекулярные леса». Три типа нитей, которые составляют его, являются повторяющимися единицами, которые могут формировать очень различные структуры, в зависимости от способа, которым эти фундаментальные единицы объединены.

Если мы хотим создать аналогию с человеческим скелетом, цитоскелет эквивалентен костной системе и, кроме того, мышечной системе..

Однако они не идентичны кости, потому что компоненты могут быть собраны и дезинтегрированы, что позволяет изменять форму и придает клетке пластичность. Компоненты цитоскелета не растворимы в моющих средствах.

форма

Как следует из названия, «интуитивная» функция цитоскелета заключается в обеспечении стабильности и формы клетки. Когда нити объединяются в этой сложной сети, это дает клетке свойство сопротивляться деформации.

Без этой структуры клетка не сможет поддерживать определенную форму. Тем не менее, это динамическая структура (в отличие от человеческого скелета), которая дает клеткам свойство изменять форму.

Движение и клеточные развязки

Многие клеточные компоненты связаны с этой сетью волокон, рассеянных в цитоплазме, способствуя их пространственному расположению.

Ячейка не похожа на бульон с различными элементами, плавающими по течению; и при этом это не статическая сущность. Напротив, это организованная матрица с органеллами, расположенными в определенных зонах, и этот процесс происходит благодаря цитоскелету.

Цитоскелет участвует в движении. Это происходит благодаря моторным белкам. Эти два элемента объединяют и допускают смещения внутри ячейки.

Он также участвует в процессе фагоцитоза (процесс, в котором клетка захватывает частицу из внешней среды, которая может быть или не быть пищей). 

Цитоскелет позволяет физически и биохимически связать клетку с ее внешней средой. Эта роль соединителя позволяет формировать ткани и соединения клеток..

Структура и компоненты

Цитоскелет состоит из трех различных типов филаментов: актина, промежуточных филаментов и микротрубочек..

В настоящее время предлагается новый кандидат в качестве четвертой цепи цитоскелета: септина. Далее подробно описывается каждая из этих частей:

Актиновые филаменты

Актиновые филаменты имеют диаметр 7 нм. Они также известны как микрофиламенты. Мономеры, из которых состоят нити, представляют собой частицы в форме шара.

Хотя они являются линейными структурами, они не имеют форму стержня: они вращаются вокруг своей оси и напоминают пропеллер. Они связаны с рядом специфических белков, которые регулируют их поведение (организация, местоположение, длина). Существует более 150 белков, способных взаимодействовать с актином.

Крайности могут быть дифференцированы; один называется плюсом (+), а другой минус (-). Из-за этих крайностей нить может расти или сокращаться. Полимеризация заметно быстрее, в крайнем случае; для того, чтобы произошла полимеризация, требуется АТФ.

Актин также может быть мономером и быть свободным в цитозоле. Эти мономеры связаны с белками, которые препятствуют их полимеризации.

Актиновые филаментные функции

Актиновые филаменты играют роль, связанную с движением клеток. Они позволяют различным типам клеток, как одноклеточных, так и многоклеточных организмов (например, клетки иммунной системы), перемещаться в окружающей среде..

Актин хорошо известен своей ролью в сокращении мышц. Вместе с миозином они сгруппированы в саркомеры. Обе структуры делают возможным это АТФ-зависимое движение.

Промежуточные нити

Приблизительный диаметр этих нитей составляет 10 мкм; отсюда и название «промежуточный». Его диаметр является промежуточным по отношению к двум другим компонентам цитоскелета.

Каждая нить структурирована следующим образом: головка в форме шара на N-конце и хвост с аналогичной формой на конце углерода. Эти концы связаны друг с другом линейной структурой, образованной альфа-спиралями.

Эти «веревки» имеют шаровые головки, которые имеют свойство наматываться на другие промежуточные нити, создавая более толстые переплетенные элементы..

Промежуточные филаменты расположены по всей клеточной цитоплазме. Они распространяются на мембрану и часто прикрепляются к ней. Эти нити также находятся в ядре, образуя структуру, называемую «ядерный лист».

Эта группа подразделяется на подгруппы промежуточных филаментов:

– Кератиновые нити.

– Нити виментина.

– нейрофиламентов.

– Ядерные листы.

Функция промежуточных нитей

Это чрезвычайно прочные и стойкие элементы. Фактически, если мы сравним их с двумя другими нитями (актином и микротрубочками), промежуточные волокна приобретают стабильность.

Благодаря этому свойству его основной функцией является механическая, противостоящая клеточным изменениям. Они встречаются в изобилии в типах клеток, которые подвергаются постоянному механическому стрессу; например, в нервных, эпителиальных и мышечных клетках.

В отличие от двух других компонентов цитоскелета, промежуточные нити не могут быть собраны и расположены на их полярных концах.

Они представляют собой жесткие конструкции (чтобы выполнять свою функцию: опора клетки и механическая реакция на напряжение), а сборка нитей является процессом, зависящим от фосфорилирования..

Промежуточные филаменты образуют структуры, называемые десмосомами. Вместе с рядом белков (кадгеринов) эти комплексы создаются, которые образуют связи между клетками.

микротрубочки

Микротрубочки – это полые элементы. Они являются крупнейшими нитями, которые составляют цитоскелет. Диаметр микротрубочек во внутренней его части составляет около 25 нм. Длина довольно изменчива, в диапазоне от 200 нм до 25 мкм.

Эти нити незаменимы во всех эукариотических клетках. Они возникают (или рождаются) из небольших структур, называемых центросомами, и оттуда простираются до краев клетки, в отличие от промежуточных нитей, которые распространяются по всей клеточной среде..

Микротрубочки состоят из белков, называемых тубулинами. Тубулин представляет собой димер, образованный двумя субъединицами: α-тубулин и β-тубулин. Эти два мономера связаны нековалентными связями.

Одной из ее наиболее важных характеристик является способность расти и укорачиваться, будучи достаточно динамичными структурами, как в актиновых филаментах..

Два конца микротрубочек можно отличить друг от друга. Поэтому сказано, что в этих нитях есть «полярность». На каждом конце, называемом более положительным и менее или отрицательным, происходит процесс самосборки.

Этот процесс сборки и деградации нити приводит к явлению “динамической нестабильности”.

Функция микротрубочек

Микротрубочки могут образовывать очень разнообразные структуры. Они участвуют в процессах клеточного деления, образуя митотический веретен. Этот процесс помогает каждой дочерней клетке иметь одинаковое количество хромосом.

Они также образуют кнутоподобные придатки, используемые для подвижности клеток, такие как реснички и жгутики.

Микротрубочки служат в качестве путей или «дорог», по которым движутся различные белки, которые имеют транспортную функцию. Эти белки подразделяются на два семейства: кинезины и динеины. Они могут путешествовать на большие расстояния внутри клетки. Транспортировка на короткие расстояния обычно осуществляется на актине.

Эти белки являются «пешеходами» дорог, образованных микротрубочками. Его движение напоминает довольно прогулку по микротрубочке.

Транспортировка включает в себя перемещение различных типов элементов или продуктов, таких как везикулы. В нервных клетках этот процесс хорошо известен, потому что нейротрансмиттеры выделяются в пузырьки.

Микротрубочки также участвуют в мобилизации органелл. В частности, аппарат Гольджи и эндосплазматический ретикулум зависят от этих нитей, чтобы занять их правильное положение. В отсутствие микротрубочек (в экспериментально мутированных клетках) эти органеллы заметно меняют свое положение.

В бактериях

В предыдущих разделах был описан цитоскелет эукариот. Прокариоты также имеют сходную структуру и имеют компоненты, аналогичные трем волокнам, которые составляют традиционный цитоскелет. К этим нитям мы добавляем одну из наших собственных принадлежностей к бактериям: группу MinD-ParA.

Функции цитоскелета у бактерий очень похожи на функции, которые они выполняют у эукариот: поддержка, деление клеток, поддержание формы клеток, среди других.

При раке

Клинически компоненты цитоскелета связаны с раком. Поскольку они вмешиваются в процессы деления, они считаются «мишенями», чтобы иметь возможность понимать и атаковать неконтролируемое развитие клеток.

ссылки

  1. Альбертс Б., Брей Д., Хопкин К., Джонсон А., Льюис Дж., Рафф М., … и Уолтер П. (2013). Основная клеточная биология. Гирлянда Наука.
  2. Fletcher, D.A. & Mullins, R.D. (2010). Клеточная механика и цитоскелет. природа, 463(7280), 485-492.
  3. Холл А. (2009). Цитоскелет и рак. Отзывы о раке и метастазировании, 28(1-2), 5-14.
  4. Мозли, Дж. Б. (2013). Расширенный вид эукариотического цитоскелета. Молекулярная биология клетки, 24(11), 1615-1618.
  5. Мюллер-Эстерл, В. (2008). Биохимия. Основы медицины и наук о жизни. Я поменял.
  6. Shih, Y.L. & Rothfield, L. (2006). Бактериальный цитоскелет. Микробиология и Молекулярная Биология Обзоры, 70(3), 729-754.
  7. Silverthorn Dee, U. (2008). Физиология человека, комплексный подход. Панамериканская медицинская 4-е издание. Bs As.
  8. Свиткина Т. (2009). Визуализация компонентов цитоскелета с помощью электронной микроскопии. в Методы и протоколы цитоскелета (стр. 187-06). Humana Press.

Источник: https://ru.thpanorama.com/articles/biologa/citoesqueleto-caractersticas-funciones-estructura-y-componentes.html

Строение

Рассмотрим строение данной структуры, далее узнаем, какие функции выполняет цитоскелет.

Цитоскелет образовался за счет белков. В его структуре выделяется несколько систем, название которых происходит от основных структурных элементов, либо от основных белков, которые входят в состав данных систем.

Поскольку цитоскелет – это структура, то в ней выделяют три основные составляющие. Они играют важную роль в жизни и движении клеток.

Цитоскелет состоит из микротрубочек, промежуточных филаментов и микрофиламентов. Последние иначе называют актиновыми филаментами. Все они по своей природе нестабильны: постоянно собираются и разбираются. Таким образом, все компоненты имеют динамическое равновесие с белками, им соответствующими.

Микротрубочки цитоскелета, представляющие собой жесткую структуру, присутствуют в цитоплазме эукариотов, а также в ее выростах, которые называются жгутиками и ресничками. Их длина может варьироваться, некоторые достигают несколько микрометров в длину. Иногда микротрубочки объединяются с помощью ручек или мостиков.

Микрофиламенты состоят из актина – белка, похожего на тот, что входит в состав мышц. В их строении в малом количестве есть и другие белки. Главное отличие актиновых филаментов от микротрубочек состоит в том, что некоторых из них нельзя увидеть в световом микроскопе. В животных клетках они объединяются в сплетение под мембраной и, таким образом, связаны с ее белками.

Микрофиламенты животных и растительных клеток также взаимодействуют с белком миозином. При этом их система имеет способность к сокращению.

Промежуточные филаменты состоят из различных белков. Данный структурный компонент достаточно не изучен. Есть вероятность, что у растений он вообще отсутствует.

Также некоторые ученые считают, что промежуточные филаменты являются дополнением к микротрубочкам.

Точно доказано то, что при рзрушении системы микротрубочек филаменты перестраиваются, а при обратной процедуре влияние филаментов практически не сказывается на микротрубочках.

Эукариоты

Между эукариотами и прокариотами существует определенная разница. Поэтому важно рассмотреть цитоскелет данных животных. Эукариоты (животные, имеющие в клетке ядро) имеют три типа филаментов.

Актиновые филаменты (иначе говоря, микрофиламенты) размещаются у мембраны клетки. Они принимают участие в межклеточном взаимодействии, а также передают сигналы.

Промежуточные филаменты – это наименее динамичная часть цитоскелета.

Микротрубочки являются полыми цилиндрами, они – очень динамичная структура.

Заключение

Таким образом, мы рассмотрели строение и функции цитоскелета. Он играет исключительно важную роль в жизнедеятельности клетки, обеспечивая важнейшие ее процессы.

Все цитоскелетные компоненты взаимодействуют. Это подтверждается существованием прямых контактов микрофиламентов, промежуточных филаментов и микротрубочек.

Согласно современным представлениям, важнейшим звеном, которое объединяет различные клеточные части и осуществляет передачу данных, является именно цитоскелет.

Источник: https://FB.ru/article/331770/tsitoskelet---eto-vajnaya-sostavlyayuschaya-kletki-stroenie-i-funktsii-tsitoskeleta

Цитоскелет

Цитоскелет клетки строение и функции

Цитоскелет — это клеточный каркас или скелет, находится в цитоплазме живой клетки. Он присутствует во всех клетках, как эукариот (животных, растений, грибов и простейших), так и прокариот.

Это динамичная структура постоянно меняется, в функции которой входит поддержка и адаптация формы клетки к внешним воздействиям, экзо- и эндоцитоз, обеспечение движения клетки как целого, активный внутриклеточный транспорт и клеточное деление. Цитоскелет образованный белками.

В цитоскелета выделяют несколько основных систем, называемых или основными структурными элементами, заметными при электронно-микроскопических исследованиях (микрофиламенты, промежуточные филаменты, микротрубочки), или по основным белками, входящих в их состав (актин-миозиновых система, кератиновое система, тубулин- динеинова система).

Общий план строения филаментов цитоскелета

Элементы цитоскелета являются полимерами, мономерами которых выступают определенные белковые субъединицы.

В отличие от других биополимеров, таких как сами белки или нуклеиновые кислоты, структурные единицы цитоскелета соединены друг с другом слабыми нековалентными связями.

Полимерная строение выгодна из-за того, что позволяет клетке быстро перегруппировывать цитоскелет: белковые мономеры маленькие, и они могут быстро диссоциировать в цитоплазме, в отличие от длинных филаментов.

Промежуточные филаменты состоят из субъединиц, которые сами являются удлиненными фибриллярного белка, в то время как мономерами микрофиламентов и микротрубочек является глобулярные белки актин и тубулин соответственно.

Белки цитоскелета могут самоорганизовываться в длинные филаменты, образуя различные типы латеральных контактов и контактов типа «хвост-голова».

В живой клетке этот процесс регулируется огромным количеством вспомогательных белков.

Элементы цитоскелета могут быть одновременно динамичными и очень прочными за того, что они состоят из нескольких протофиламентив — длинных линейных нитей, построенных с мономеров, размещенных в один ряд. Обычно протофиламенты спирально закручиваются друг вокруг друга.

Микротрубочки состоят из тринадцати протофиламентив размещенных по кругу, микрофиламенты — из двух спирально закрученных, а промежуточные филаменты — с восьми.

Вследствие такого строения диссоциация мономера с конца фибриллы происходит значительно легче, чем разрыв посередине, так как для диссоциации необходимо разрушения только одного продольного связи и одного-двух латеральных, а для разрыва — большого количества продольных связей.

Поэтому перестройка элементов цитоскелета происходит относительно легко, и в то же время они могут легко противостоять тепловым повреждением и выдерживать различные механические воздействия.

Элементы цитоскелета эукариот

Основными функциями цитоскелета является поддержание формы клетки и обеспечения перемещения как клетки в целом, так и внутриклеточных компонентов внутри клетки. Цитоскелет состоит из трех основных компонентов: микрофиламентов, микротрубочек и промежуточных филаментов. Это супрамолекулярные, протяжные полимерные структуры, состоящие из белков одного типа.

Сравнительная характеристика основных элементов цитоскелета
МикротрубочкиАктиновые филаментыПромежуточные филаменты
Фотография
Схема строения
СтрукутраТрубка из 13 протофиламентив белка тубулинаДва закрученных одна вокруг одного протофиламенты актинаНесколько протофиламентив, состоящие из фибриллярных белков объединены в канатоподибну структуру
Диаметр25Нм с просветом в 15 нм7 нм8-12нм
Белковые субъединицыТубулин — димер, состоящий из α- и β-тубулинаАктинРазличные белки в зависимости от типа клеток и функции (например кератин, белки ламины, виментину т.д.)
Нуклеотиды нужны для полимеризацииГТФАТФНе нужны
Основные функции
  • Поддержание формы клетки
  • Утоворення ресничек и жгутиков, обеспечивающих локомоциях клетки
  • Расхождения хромосом во время деления клеток
  • Транспорт органелл
  • Поддержание клеточной формы
  • Изменения в форме клеток
  • Сокращение мышц
  • Движение цитоплазмы
  • Локомоция клетки с помощью псевдоподий
  • Обеспечение цитокинеза
  • Поддержание формы клетки
  • Закрепление ядра и других органелл в определенном положении
  • Образование ядерной ламины
  • Поддержка аксонов в нейронах

Динамика элементов цитоскелета

Элементы цитоскелета являются динамическими структурами: их можно сравнить с цепочкой муравьев, которые идут к месту сбора пищи. Хотя сам цепочка может существовать часами, каждый муравей в нем находится в постоянном движении.

Так же и элементы цитоскелета постоянно обмениваются субъединицами с цитоплазмой, где мономеры находятся в растворимой форме.

Относительной стабильностью характеризуются только промежуточные филаменты, поэтому информация о динамике касается в большей степени микротрубочек и актиновых филаментов.

Примером динамичности и гибкости цитоскелета клетки может быть перегруппировки микротрубочек, которые в интерфазе образуют структуру похожую на звезду, лучи которой отходят от центра клетки, а перед разделением способны быстро создать веретено деления.

В то же время некоторые структуры, построенные из элементов цитоскелета могут существовать очень долгое время: например на поверхности волосковых клеток внутреннего уха является вырасти — стереоцили, поддерживаемых пучками микрофиламентов.

Эти пучки существуют на протяжении всей жизни животного, хотя их субъединицы постоянно обновляются

Скорость присоединения и диссоциации субъединиц описывается константами k on (измеряется в М -1 × с -1) и k off (измеряется в с -1) соответственно.

Причем скорость присоединения зависит не только от k on, но и от концентрации свободных мономеров в цитоплазме, а скорость диссоциации является постоянной.

Когда филамент растет, то количество свободных мономеров в цитоплазме падает, пока не достигнет определенного уровня — критической концентрации (C C), при которой скорость присоединения будет равна скорости диссоциации: C C × k on = k off, откуда:

Нуклеация

Мономеры элементов цитоскелета могут спонтанно образовывать комплексы в растворе. Однако, такие олигомеры обычно нестабильны, потому что каждая субъединица в них образует связи только с небольшим количеством других. Этих взаимодействий часто недостаточно, чтобы удержать комплекс, и он в основном быстро распадается.

Для образования длинных филаментов необходимо наличие первоначального агрегата с такого количества мономеров, которой будет достаточно для стабилизации, такой агрегат называется ядром, а процесс его образования — нуклеации.

Для актиновых филаментов, ядро ​​должно состоять минимум из трех субъединиц, тогда как образование микротрубочек начинается с сложного комплекса (предположительно, из 13 молекул тубулина, образующих кольцо).

Нуклеация обычно является лимитирующим этапом в образовании длинных филаментов в растворе свободных мономеров. После инициации полимеризации в таком растворе наблюдается лаг-фаза, во время которой не наблюдается образование филаментов.

Ее существование объясняется тем, что нестабильность небольших олигомеров создает кинетический барьер в полимеризации, и длится она до тех пор, пока не произойдет процесс нуклеации.

Если к раствору мономеров добавить готовые комплексы субъединиц (например, состоящие из соединенных ковалентно мономеров), тогда лаг-фазы наблюдаться не будет.

Потребность в нуклеации используется клеткой для регулирования образования новых элементов цитоскелета. Существуют специальные белки, которые могут катализировать нуклеации в специфическом месте, где необходимо образование микротрубочек или актиновых филаментов.

Полярность микротрубочек и микрофиламентов

В отличие от мономеров промежуточных филаментов, актин и тубулин имеют два структурно и функционально разные концы. В составе микрофиламентов и микротрубочек все субъединицы возвращены в одну сторону, таким образом данные элементы цитоскелета обладают полярностью. Два конца этих филаментов отличаются по динамике полимеризации и деполимеризации:

  • конец, на котором полимеризация и деполимеризация происходят быстрее называется плюс концов;
  • конец, на котором полимеризация и деполимеризация происходят медленнее называется минус концов.

В микротрубочках α-субъединицы тубулина возвращены в минус-конца, а β — до плюс. В Микрофиламентов мономеры актина размещены таким образом, что их АТФ-связывающая щель указывает в сторону минус конца.

Несмотря на то, что абсолютные занчення k on и k off могут сильно отличаться для плюс и минус конца, их соотношение является постоянной величиной.

Поскольку изменение свободной энергии ΔG вследствие диссоциации или присоединения новой субъединицы одинакова, не в зависимости от того, на каком конце филамента произошли изменения.

Поэтому, когда концентрация свободных мономеров C C C, оба конца растут. Это подтверждается только при отсутствии гидролиза нуклеозидтрифосфатов (АТФ или ГТФ).

Гидролиз нуклеотидтрифосфатив

Актин и тубулин — это не просто мономеры элементов цитоскелета, они также являются ферментами, которые могут осуществлять гидролиз АТФ и ГТФ соответственно.

Одна молекула актина связывает одну молекулу АТФ, тогда как димер тубулина — две молекулы ГТФ (по одной на каждую субъединицу), то ГТФ, что находится в α-субъединицы никогда не гидролизуетья и не обменивается, тогда как ГТФ β-субъединицы может превращаться на ГДФ.

В свободных мономерах актина и тубулина гидролиз нуклеотидов происходит очень медленно, для ускорения этого процесса необходимо действие определенного фактора — ГТФаза- или АТФаза-активирующих белков.

Причем для тубулина и актина такими факторами являются другие молекулы тубулина или актина соответственно, поэтому гидролиз нуклеотидтрифосфату значительно ускоряется после инкорпорации мономера в филамент цитоскелета, где он взаимодействует с другими идентичинмы молекулами.

Микротрубочки и микрофиламенты могут существовать в двух формах «Т-форме» (мономеры связаны с ГТФ или АТФ) и «Д-форме» (мономеры связаны с ГДФ или АДФ).

После гидролиза нуклеотидтрифосфату большая часть энергии, высвобождаемой «хранится» в структуре филаментов.

Поэтому изменение свободной энергии для диссоциации мономера с Д-формы становится негативный, чем для диссоциации с Т-формы, а следовательно и соотношение k off / k on, равное значению критической концентрации, будет больше для Д-формы, чем для Т. Иными словами, Д-форма более «склонна» к диссоциации. При определенном значении концентрации свободных субъединиц C, когда C C (T)

Источник: https://info-farm.ru/alphabet_index/c/citoskelet.html

2.2. Клетка – единица строения, жизнедеятельности, роста и развития организмов

Цитоскелет клетки строение и функции

Клетки могут отличаться друг от друга по форме, строению и функциям, хотя основные структурные элементы у большинства клеток сходны. Систематические группы клеток – прокариотические и эукариотические (надцарства прокариоты и эукариоты).

Прокариотические клетки не содержат настоящего ядра и ряда органоидов (царство дробянки).

Эукариотические клетки содержат ядро, в котором находится наследственный аппарат организма (надцарства грибы, растения, животные).

Любой организм развивается из клетки.

Это относится к организмам, появившимся на свет как в результате бесполого, так и в результате полового способов размножения. Именно поэтому клетка считается единицей роста и развития организма.

1.Особенности строения клеток прокариот и эукариот

Прокариоты – древнейшие организмы, образующие самостоятельное царство. К прокариотам относятся бактерии, сине-зеленые «водоросли» и ряд других мелких групп.

Клетки прокариот не обладают, в отличие от эукариот, оформленным клеточным ядром и другими внутренними мембранными органоидами (за исключением плоских цистерн у фотосинтезирующих видов, например, у цианобактерий).

Единственная крупная кольцевая (у некоторых видов – линейная) двухцепочечная молекула ДНК, в которой содержится основная часть генетического материала клетки (так называемый нуклеоид) не образует комплекса с белками-гистонами (так называемого хроматина). К прокариотам относятся бактерии, в том числе цианобактерии (сине-зелёные водоросли).

Также к ним можно условно отнести постоянные внутриклеточные симбионты эукариотических клеток – митохондрии и пластиды.

Эукариоты (эвкариоты) (от греч. eu– хорошо, полностью иkaryon– ядро) – организмы, обладающие, в отличие от прокариот, оформленным клеточным ядром, отграниченным от цитоплазмы ядерной оболочкой.

Генетический материал заключён в нескольких линейных двухцепочечных молекулах ДНК (в зависимости от вида организмов их число на ядро может колебаться от двух до нескольких сотен), прикрепленных изнутри к мембране клеточного ядра и образующих у подавляющего большинства (кроме динофлагеллят) комплекс с белками-гистонами, называемый хроматином. В клетках эукариот имеется система внутренних мембран, образующих, помимо ядра, ряд других органоидов (эндоплазматическая сеть, аппарат Гольджи и др.). Кроме того, у подавляющего большинства имеются постоянные внутриклеточные симбионты-прокариоты – митохондрии, а у водорослей и растений – также и пластиды.

2. Клетки эукариот. Строение и функции

К эукариотам относятся растения, животные, грибы.

Клеточной стенки у клеток животных нет. Она представлена голым протопластом. Пограничный слой клетки животных – гликокаликс – это верхний слой цитоплазматической мембраны, «усиленный» молекулами полисахаридов, которые входят в состав межклеточного вещества.

Митохондрии имеют складчатые кристы.

В клетках животных есть клеточный центр, состоящий из двух центриолей. Это говорит о том, что любая клетка животных потенциально способна к делению.

Включение в животной клетке представлено в виде зерен и капель (белки, жиры, углевод гликоген), конечных продуктов обмена, кристаллов солей, пигментов.

В клетках животных могут быть сократительные, пищеварительные, выделительные вакуоли небольших размеров.

В клетках нет пластид, включений в виде крахмальных зерен, крупных вакуолей, заполненных соком.

3. Сопоставление прокариотической и эукариотической клеток

Наиболее важным отличием эукариот от прокариот долгое время считалось наличие оформленного ядра и мембранных органоидов. Однако к 1970 – 1980-м гг.

стало ясно, что это лишь следствие более глубинных различий в организации цитоскелета. Некоторое время считалось, что цитоскелет свойственен только эукариотам, но в середине 1990-х гг.

белки, гомологичные основным белкам цитоскелета эукариот, были обнаружены и у бактерий.

Именно наличие специфическим образом устроенного цитоскелета позволяет эукариотам создать систему подвижных внутренних мембранных органоидов.

Кроме того, цитоскелет позволяет осуществлять эндо- и экзоцитоз (как предполагается, именно благодаря эндоцитозу в эукариотных клетках появились внутриклеточные симбионты, в том числе митохондрии и пластиды).

Другая важнейшая функция цитоскелета эукариот – обеспечение деления ядра (митоз и мейоз) и тела (цитотомия) эукариотной клетки (деление прокариотических клеток организовано проще). Различия в строении цитоскелета объясняют и другие отличия про- и эукариот.

Например, постоянство и простоту форм прокариотических клеток и значительное разнообразие формы и способность к её изменению у эукариотических, а также относительно большие размеры последних.

Так, размеры прокариотических клеток составляют в среднем 0,5 – 5 мкм, размеры эукариотических – в среднем от 10 до 50 мкм.

Кроме того, только среди эукариот попадаются поистине гигантские клетки, такие как массивные яйцеклетки акул или страусов (в птичьем яйце весь желток – это одна огромная яйцеклетка), нейроны крупных млекопитающих, отростки которых, укрепленные цитоскелетом, могут достигать десятков сантиметров в длину.

По своей структуре организмы могут одноклеточными и многоклеточными. Прокариоты преимущественно одноклеточны, за исключением некоторых цианобактерий и актиномицетов. Среди эукариот одноклеточное строение имеют простейшие, ряд грибов, некоторые водоросли. Все остальные формы многоклеточны. Считается, что одноклеточными были первые живые организмы Земли.

По способу питания и строению клеток выделяют  царства:

  • Дробянки;
  • Гриб
  • Растения;
  • Животные.

Бактериальные клетки (царство Дробянки) имеют: плотную клеточную стенку, одну кольцевую молекулу ДНК (нуклеоид), рибосомы.

В этих клетках нет многих органоидов, характерных для эукариотических растительных, животных и грибных клеток. По способу питания бактерии делятся на фототрофов, хемотрофов, гетеротрофов.

Клетки грибов покрыты клеточной стенкой, отличающейся по химическому составу от клеточных стенок растений. Она содержит в качестве основных компонентов хитин, полисахариды, белки и жиры. Запасным веществом клеток грибов и животных является гликоген.

Клетки растений содержат: хлоропласты, лейкопласты и хромопласты; они окружены плотной клеточной стенкой из целлюлозы, а также имеют вакуоли с клеточным соком. Все зеленые растения относятся к автотрофным организмам.

У клеток животных нет плотных клеточных стенок. Они окружены клеточной мембраной, через которую происходит обмен веществ с окружающей средой.

Источник: https://zen.yandex.ru/media/id/5c1369c1eaf0a500aa6a15f0/22-kletka--edinica-stroeniia-jiznedeiatelnosti-rosta-i-razvitiia-organizmov-5c50a3a8168e0900af1e0b0c

Все о медицине
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: