Цитология ученые и их открытия

Урок 4: Цитология

Цитология ученые и их открытия

План урока:

Развитие знаний о клетке

Современная клеточная теория

Методы цитологии

Развитие знаний о клетке

Развитие знаний о клетке начинается с семнадцатого века.

Предпосылкой ее открытия стало изобретение микроскопа и использование его для исследования биологических объектов. В 1665 году англичанин Роберт Гук изучал под микроскопом срез пробки и обнаружил, что она состоит из ячеек. Внешне они напоминали пчелиные соты, и учёный дал им название клетки. Такое же строение Гук отметил в сердцевине бузины, камыша и некоторых других растений.

Во второй половине 17 века клеточное строение растений было подтверждено М.Мальпиги (1675) и Н.Грю (1682). Значительный вклад в изучение клеток внес голландский ученый А.Левенгук, открывший в 1674 г. одноклеточные организмы – бактерии. Он же впервые увидел клетки животного – эритроциты.

Первая половина 19 века ознаменовалась открытием яйцеклетки млекопитающих Карлом Бэром. Он доказал, что все организмы развиваются из одной клетки. Ученым были сформулированы основные закономерности эмбриологии, которые получили название закон Бэра.

Соответственно, в 19 веке происходило активное развитие знаний о клетке, что стало предпосылками для разработки клеточной теории. К этому времени сложилось представление о клетке как элементарной микроскопической структуре всех живых существ.

Важнейшим толчком для разработки положений клеточной теории явилось доказательство наличия ядра в растительной клетке,сделанное Маттиасом Шлейденом.

В 1838г выходит в свет труд «Материалы к филогенезу», в котором Шлейден излагает свою теорию происхождения клеток. Он утверждал, что любая клеточная структура происходит от материнской клетки. Однако ученый не предполагал, что животные также состоят из клеток.

Намного дальше продвинулся ученый Теодор Шванн, который и сформулировал теорию клеточного строения, основываясь на выводах Шлейдона.

В 1839г он опубликовал книгу, в которой обобщил накопленные знания о клетке. Этот труд отражал главную идею теории Шванна: жизнь сосредоточена в клеточных структурах.

Выделим основные положения первой клеточной теории созданной Шванном и Шлейденом.

Теория была существенно дополнена Рудольфом Вирховым. В 1858г вышел в свет основной труд немецкого ученого «Целлюлярная (клеточная) патология».

Эта книга положила начало новой науке – патологии, но помимо этого, была описана роль частей клетки в организме.

Также Вирхов разработал еще одно положение клеточной теории: «Клетка способна возникнуть преимущественно из предыдущей клетки вследствие ее деления».

Открытия Вирхова легли в основу современной клеточной теории, пополнявшейся с помощью новых методов исследования.

К 20 веку сформировалась самостоятельная ветвь биологии, изучающая клетки – цитология.

Остановимся подробнее на методах цитологии, с помощью которых клеточная теория в наше время дополняется новыми положениями.

Методы цитологии

Точные представления о химическом составе, строении и функциях всех основных структур клетки были получены с помощью основных методов цитологии. Познакомимся с ними на схеме.

Остановимся подробнее на каждом методе.

  1. Самым древним методом изучения клеток в цитологии является световая микроскопия. Изобретение первого простейшего микроскопа датируется 1608 годом и принадлежит очковому мастеру Захарию Янсену.

Микроскоп Янсена был больше всего похож на увеличительную трубку и для изучения клеточного строения не был использован. Первым, кто использовал микроскоп для изучения живых организмов, считается Роберт Гук. Его увеличительный прибор был более совершенным, позволявшим увеличивать объекты в 50 раз.

Микроскоп Р.Гука Источник

Непосредственно с данного момента начинается использование метода световой микроскопии для изучения клеток.

Антони ван Левенгук усовершенствовал микроскоп таким образом, что живые объекты можно было рассматривать в 300-кратном увеличении.

Источник

На иллюстрации изображен простейший увеличительный прибор 17 века. Что же представляет его конструкция? Обычная пластина, в центре которой находится линза, а напротив нее игла для крепления объекта.

Наблюдатель должен был смотреть через линзу на объект, обязательно при этом направлять отверстие на горящую свечу или яркий солнечный свет.

Вот такой простой прибор давал многократное увеличение, что явилось еще одним шагом для создания современных приборов в световой микроскопии.

С течением времени изменялся внешний вид микроскопов и их возможности для изучения клеток. Как же выглядит современный световой микроскоп? Познакомимся на рисунке.

Впервые со световым микроскопом вы познакомились на уроках биологии в 5 классе. Для повторения материала по устройству микроскопа и определению его увеличительной способности можно обратиться к уроку Клеточное строение растений.

В этих микроскопах используется световая волна, и рассматривать объекты меньше длины такой волны невозможно. Поэтому на смену световым микроскопам пришли электронные, использующие пучки электронов.

Однако световые микроскопы используются до сих пор. Преимуществом световой микроскопии является простота в использовании, возможность рассматривать живые объекты и следить за процессами, протекающими в них.

  1. Одним из основных методов цитологии в современном мире является электронная микроскопия. Первый электронный микроскоп был создан Райнхольдом Руденбергом.

Возможности электронного микроскопа значительно шире светового – можно рассматривать объекты величиной около 1 нм. Познакомимся на рисунке со сравнительными размерами некоторых объектов, которые можно увидеть невооруженным взглядом, рассмотреть в световой или электронный микроскоп.

Проанализировав рисунок, можно явно увидеть преимущества электронного микроскопа при изучении клетки. Однако недостатком считается невозможность таким способом изучать живые объекты.

Любая клетка перед исследованием подвергается обработке, при которой она погибает. Приготовленный препарат исследуют под микроскопом и результатом становится черно-белое увеличенное изображение объекта.

Так, к примеру, впервые было получено изображение многих вирусов и изучено их строение.

Изображение коронавируса с помощью электронного микроскопа Источник

Суть действия электронного микроскопа основана на проникновении пучка электронов через линзы на объект. Часть электронов рассеиваются на препарате, и воссоздается изображение, отображаемое на экране.Познакомимся на рисунке со строением электронного микроскопа.

Источник

У данного метода есть и недостатки. Оборудование достаточно дорогое и сложное в применении. При этом такие микроскопы должны быть размещены в устойчивых зданиях, без наличия других электромагнитных полей.

Широко используется такой метод исследования в науке, а также во многих областях промышленности. Особенно следует отметить такую отрасль как нанотехнология, которая развивается только благодаря созданию электронного микроскопа.

  1. Изучение отдельных органоидов клетки осуществляется методом ультрацентрифугирования. Для этого используют специальные приборы, именуемые центрифугами.

Центрифуга лабораторная Источник

Для начала клетки проходят подготовительный этап – их дробят, разрушая клеточные оболочки. Затем их помещают в центрифугу в пробирках и вращают с очень большой скоростью. Принцип действия метода ультрацентрифугирования основывается на различной плотности, массе и размерах составных частей клетки. При вращении они осаждаются с разной скоростью и расслаиваются, к примеру, как на рисунке.

Источник

Аналитическое центрифугирование широко используется при лабораторных исследованиях в медицине. К примеру, для анализа содержания в крови иммуноглобулинов применяют ультрацентрифугирование белков. Такой анализ необходим для выявления проблем с иммунной системой.

Анализ крови методом центрифугирования Источник

Современная клеточная теория

Со времени основания клеточной теории осуществлялось развитие учения о клетке как элементарной микроскопической структуре организма.

К первой половине 20 века стало ясно первоочередное значение клеточных структур в передаче наследственной информации. Благодаря успехам микроскопической техники обнаружено сложное строение клетки, описаны ее части и их функции.

Описан способ образования новых клеток путем деления материнской клеточной структуры.

Все открытия в цитологии были учтены при разработке положений современной клеточной теории.

Рассмотрим сложившиеся к настоящему времени основные положения клеточной теории.

Первое положение клеточной теории изложено еще Теодором Шванном и лишь немного претерпело изменения. Ученый утверждал, что растительный и животный организм состоит из клеточных структур. Со временем науке стали известны и другие царства живых организмов. Поэтому данное положение было сформулировано по-иному.

В чем же суть первого положения современной клеточной теории? Всем известно,что организмы обладают клеточным строением, помимо этой структуры жизнь не существует. Сейчас известны только одни неклеточные существа – вирусы, однако к жизнедеятельности они способны только при проникновении внутрь клетки.

Причем согласно клеточной теории клетка считается функциональной единицей, то есть она способна жить, питаться, осуществлять обмен веществ. В этом она сравнима с целым организмом. 

Второе утверждение клеточной теории говорит о том, что клетки обладают единым планом строения, то есть у всех клеточных структур есть оболочка, ядро, цитоплазма, а также другие части. Им характерен одинаковый состав,представленный такими веществами как белки, липиды, углеводы, нуклеиновые кислоты. Соответственно, при таком сходстве сохраняется и единый принцип жизнедеятельности.

Третий постулат современной клеточной теории сформулирован еще Рудольфом Вирховым. Именно он утверждал, что клетки могут появляться только из других таких же структур. В дальнейшем это подтвердилось наукой и до настоящего времени иных способов образования клеток не выявлено.

Согласно клеточной теории клетка – это основная единица организмов, хотя она способна и к самостоятельной жизнедеятельности. Действительно, мы знаем, что существуют одноклеточные существа, где клетка исполняет роль целого организма.

На клеточном уровне обнаруживаются все свойства живого: способность к саморегуляции, размножение, рост и развитие, обмен веществ. Однако в многоклеточном организме, каждая группа клеток совершает какие-то специфические функции.

Такое разделение функций в организме способствовало появлению значительных возможностей для адаптации к среде обитания.

В чем же значение теории клеточного строения организмов для человечества?

Очень хорошо оценил ее роль Ф.Энгельс, обозначив клеточную теорию как одно из главнейших достижений человечества наряду с законом сохранения энергии и эволюционной теорией. В своих трудах он писал, что данное открытие позволило понять единство развития всех живых существ. Однако, клетки способны видоизменяться и это явилось толчком эволюции организмов.

Клеточная теория имела большое значение для становления материалистических представлений в биологии и медицине. Благодаря полученным знаниям развиваются новые области науки – биотехнология, нанотехнология, клеточная инженерия, селекция микроорганизмов.

Источник: https://100urokov.ru/predmety/citologiya

Цитология и ее методология

Цитология ученые и их открытия

Цитология (греч. cytos — клетка + logos — наука) – наука о строении и жизнедеятельности клетки. На данный момент нам кажется очевидным, что растения, грибы и животные состоят из клеток, однако раньше об этом и не догадывались.

Цитология начала свой путь развития относительно недавно, в этой статье мы обсудим клеточную теорию и методы, которые используются в цитологии для изучения клеток (методологию).

Клеточная теория

Создание и развитие клеточной теории стало возможным после изобретения микроскопа в 1590 году голландским мастером по изготовлению очков – Захарием Янсеном. Первый микроскоп мог увеличивать изучаемый объект до 3-9 раз.

В 1665 году Роберт Гук, используя микроскоп собственного изобретения, смог различить ячеистые структуры пробки ветки бузины. Эти ячеистые структуры напомнили Роберту Гуку монашеские кельи, он ввел термин клетка (от лат. сеllа — комната, келья).

На самом деле Роберт Гук увидел не живые клетки, как он предполагал, а оставшиеся от них плотные клеточные стенки, которые и представляли собой ячеистую структуру.

В 70-х годах XVII века нидерландский натуралист Антони ван Левенгук открыл целый мир, невидимый невооруженным глазом. Он увидел в микроскопе простейшие организмы: инфузорий, сперматозоидов, а также дрожжи, бактерии, эпидермис кожи.

В течение 50 лет он отсылал результаты своих наблюдений в Лондонское королевское общество. Поначалу они были встречены со скептицизмом, но когда комиссия ученых лично во всем убедилась и подтвердила подлинность его исследований, Антони ван Левенгук был избран действительным членом Лондонского королевского общества.

В последующее время было много описаний самых разных клеток, однако обобщить накопленный материал оказалось не легкой задачей. С ней в 1839-1840 годах справились немецкий ботаник Маттиас Шлейден и немецкий зоолог Теодор Шванн.

Изучая строение растений и животных, Шлейден и Шванн независимо друг от друга пришли к одному и тому же выводу: все организмы, как растительные, так и животные, состоят из клеток, сходных по строению. Они постулировали, что все живое состоит из клеток.

В 1839-1840 годах возникла клеточная теория Шлейдена и Шванна, основные положения которой:

  • Все организмы состоят из клеток
  • Клетка – мельчайшая структурная единица жизни
  • Образование новых клеток – основополагающий способ роста и развития растений и животных
  • Организм представляет собой сумму образующих его клеток

Допустили ли Шлейден и Шванн ошибки? Да, они были. Ошибочно предположение о том, что клетка может образоваться из неклеточного вещества.

Важное дополнение в 1855 в клеточную теорию внес Рудольф Вирхов, который утверждал, что любая клетка может образоваться только путем деления материнской клетки.

Какие же положения включает в себя современная клеточная теория? Приступим к их изучению:

  • Клетка является структурной, функциональной и генетической единицей живого
  • Клетки растений и животных сходны между собой по строению и химическому составу
  • Клетка образуется только путем деления материнской клетки
  • Клетки у всех организмов окружены мембраной (имеют мембранное строение)
  • Ядро клетки – ее главный регуляторный органоид
  • Клеточное строение растений, животных и грибов свидетельствует о едином происхождении всего живого
  • В многоклеточном организме клетки подразделяются (дифференцируются) по строению и функции. Они объединяются в ткани, органы и системы органов.
  • Клетка – элементарная, открытая и живая система, способная к самообновлению, воспроизведению и саморегуляции

XX век несомненно стал веком биологических наук: цитологии, генетики. Это произошло во многом благодаря клеточной теории.

Я хочу поделиться с вами моим искренним восхищением новой жизни. Вдумайтесь – мы ведь когда-то с вами были всего одной единственной клеткой, зиготой! Как в одной клетке природе удалось уместить столько всего: кожу, мышцы, нервную систему, пищеварительный тракт? Мы приоткроем завесу этой тайну в статьях по генетике и эмбриологии, и, тем не менее, мое восхищение этим безгранично.

Наши клетки рождаются и умирают: эпителий кишечника обновляется каждые 5 дней полностью, при удалении 70% печени оставшиеся клетки способны восстановить всю структуру этого органа, каждые 30 дней мы получаем новую кожу. При этом наше сознание и память остаются с нами. Мы – чудо, настоящее чудо природы, созданное из одной единственной клетки.

Микроскопия

Микроскопия – важнейший метод цитологии, в ходе которого объекты рассматриваются при помощи микроскопа. Его оптическая система состоит из двух основных элементов: объектива и окуляра, закрепленных в тубусе. Микропрепарат (срез тканей) располагается на предметном столике, расстояние от которого до объектива регулируется с помощью винта (винтов).

Чтобы посчитать увеличительную способность микроскопа следует умножить увеличение окуляра на увеличение объектива. К примеру, если окуляр увеличивает объект в 20 раз, а объектив – в 10, то суммарное увеличение будет в 200 раз.

https://www.youtube.com/watch?v=tKHogz1BybQ\u0026list=PLPPMgoisBhaPSCxs2hYu529ls__fP-JRt

Некоторое внимание уделим направлениям в биологии, которые необходимо знать на современном этапе технического прогресса.

Биоинженерия

Биоинженерия – направление науки и техники, развивающее применение инженерных принципов в биологии и медицине. В рамках биоинженерии происходят попытки (и довольно успешные) выращивания тканей и создание искусственных органов, протезов.

То есть биоинженерия занимается преимущественно технической частью. Медицинское направление в биоинженерии ищет замену органам и тканям человека, которые утратили свою функциональную активность и требуют “замены”.

Биотехнология

Биотехнология – направление биологии, изучающее возможность применения живых организмов или продуктов их жизнедеятельности для решения технологических задач. В биотехнологии путем генной инженерии создают организмы с заданным набором свойств.

В рамках биотехнологии происходит получение антибиотиков – продуктов жизнедеятельности бактерий, очищение водоемов с помощью моллюсков, увеличение плодородия почвы с помощью дождевых червей, клонирование организмов.

Это разительно отличается от задач биоинженерии, хотя безусловно, эти дисциплины смежные. Все-таки в биотехнологии происходит большее вторжение в живой мир, по сути человек выступает эксплуататором, достигая с помощью животных, растений и грибов своих целей. Человек проводит естественный отбор, отделяя особей, которые продолжат род, от других, “менее перспективных”.

В рамках биотехнологии выделяются следующие направления:

  • Генная инженерия
  • Представляет собой совокупность методов и технологий, которые приводят к получению рекомбинантных РНК и ДНК, выделению генов из клеток и внедрения их в другие организмы.Изменив молекулу ДНК или РНК, человек добивается своей цели: клетка начинает синтезировать с нее белок. Он то и нужен человеку, такие продукты жизнедеятельности активно используются в медицине, к примеру, при изготовлении антибиотиков.В ходе генной инженерии был получены:

    • Сорт кукурузы, устойчивый к действию насекомых-вредителей
    • Бактерии, продуктом жизнедеятельности которых является человеческий инсулин, используемый в дальнейшем как лекарство
    • Культура клеток, вырабатывающих гормон человека – эритропоэтин, также используемый в лечебных целях
  • Клеточная инженерия
  • Представляет собой совокупность методов и технологий, используемых для конструирования новых клеток. В основе лежит идея культивирования клеток тканей вне организма.

    С помощью клеточной инженерии возможно бесполое размножение ценных форм растений. Часто получаются, так называемые, гибридные клетки, которые сочетают свойства, к примеру, раковых клеток и лимфоцитов, в результате становится возможно быстрое получение антител.

Источник: https://studarium.ru/article/118

История цитологии

Цитология ученые и их открытия

Цитология (от греч. kytos – вместилище, сосуд и logos – учение, наука) исследует элементарные единицы строения, функционирования и воспроизведения живой материи. Объектом цитологических исследований являются клетки многоклеточных и одноклеточных организмов: бактерий, грибов, растений и животных.

У многоклеточных организмов клетки входят в состав тканей, их жизнедеятельность подчинена координирующему влиянию целостного организма. У одноклеточных организмов понятия «клетка» и «организм» совпадают.

Поэтому правомочно говорить о клетках-организмах, ведущих в природе самостоятельное существование, как о переходном этапе к многоклеточности.

Становление цитологии

Наука о клетке ведет свою историю с середины XIX века, но корнями уходит в XVII век. Ее начало некоторые исследователи относят к 1609 году, когда выдающийся итальянский физик, механик и астроном Галилео Галилей сконструировал свой оккиолино с выпуклой и вогнутой линзами, увеличивающий в 35 – 40 раз. В 1625 году И. Фабер дал прибору название «микроскоп».

В 1665 году английский физик Роберт Гук, изучая с помощью созданного им микроскопа строение тонкого среза коры растения, впервые разглядел в пробковом слое крохотные ячейки и назвал их «cellula» – ячейка, или клетка. Это название сохранилось до настоящего времени. После Р.

Гука клеточное строение растений подтвердили ботаники – итальянец Марчелло Мальпиги (1675) и англичанин Неемия Грю (1683).

В это же время Антони ван Левенгук впервые наблюдал под микроскопом клетки многоклеточных животных (эритроциты крови и сперматозоиды), а также одноклеточные водные организмы.

Интересно, что Левенгук не был ученым-биологом, проводившим систематические исследования, он был просто очень любопытным человеком. Он зарисовывал свои наблюдения и отсылал Королевскому научному обществу в Лондоне, не ожидая ответа. Всего было послано более ста писем.

https://www.youtube.com/watch?v=SvNFTnjRJqg\u0026list=PLPPMgoisBhaPSCxs2hYu529ls__fP-JRt

Таким образом, Левенгук оказался первым, кто описал и зарисовал различные микроорганизмы (преимущественно инфузории). К ним он относил даже клетки «жидкостей» высших животных (эритроциты и сперматозоиды). Эти крошечные существа он назвал анималькулями (от лат. animalcula – зверьки).

Вскоре (1678) Христиан Гюйгенс подтвердил результаты Левенгука.

После этого начались интенсивные исследования, которые уже проводились учеными-естественниками, а усовершенствование микроскопа и разработка методов гистологических исследований (гистология – наука о тканях) дали новый импульс к изучению клетки.

В начале XVIII века клетки, ткани и сосуды растений исследовали многие ученые. Французский ботаник Генрих Дюгамель, продолжая начатые Мальпиги и Грю исследования коры древесных растений, описал образовательный слой и назвал его камбием.

В 1718 году французский натуралист Л. Жобло в своем сочинении о применении микроскопа наряду с характеристикой разных его типов описал многочисленных представителей простейших, наблюдаемых им в микроскоп.

Он описал детали внешнего строения инфузории: реснитчатый покров, ядро, сократительные вакуоли.

В целом уровень знаний о клетке, достигнутый к концу XVIII века, давал представление о внешнем строении клетки, о целлюлозной клеточной оболочке растительной клетки и внутреннем «пузырьке», наполненном соком.

Дальнейшее развитие науки о клетке вплоть до XIX века шло очень медленно, так как используемые в то время микроскопы были несовершенны и не существовало специальных методов подготовки микропрепаратов, необходимых для выявления клеточной структуры, таких как фиксация, окраска, просветление. Не сразу появились и осветительные системы линз, зеркал. Все это затрудняло проведение цитологических исследований.

Достижения цитологии в XIX веке

В начале XIX века новым шагом в изучении клеток стали труды немецкого врача и ботаника Л.Х. Тревирануса. В книге о развитии клеток водоносных сосудов (1806) он впервые установил единство клеточного строения у растений.

Вслед за ним французский ученый Шарль Мирбель показал, что тело растений состоит из тканей. В 1827 году английский ботаник Роберт Броун обнаружил и описал ядро клетки, не задаваясь вопросом о его назначении.

Этот вопрос позже был решен немецким ученым Маттиасом Якобом Шлейденом. В это же время российский ученый-эмбриолог Карл Максимович Бэр открыл яйцеклетку млекопитающих (1827) и установил, что все многоклеточные организмы начинают свое развитие из одной клетки (1828).

Открытия, сделанные К.М. Бэром, показали, что клетка – единица не только строения, но и развития организмов.

В 30-е годы XIX века в клетках всех многоклеточных организмов были обнаружены ядра. Немецкий ученый-ботаник М.Я. Шлейден в книге «Данные о развитии растений» (1838) предложил теорию образования растительных клеток и показал значение ядра для формирования всей клетки.

Его соотечественник зоолог Теодор Шванн в своем знаменитом труде «Микроскопические исследования о соответствии в структуре и росте животных и растений» (1839) выдвинул идею об общности строения животных и растений и универсальности их клеточной организации. Здесь Т. Шванн впервые применил термин «клеточная теория», а его данные послужили ее убедительным обоснованием.

Он подчеркнул также не только морфологическое, но и физиологическое значение клеток и ввел понятие о клеточном метаболизме.

Шлейден и Шванн изложили фактически основы классической клеточной теории, согласно которой все животные и растения построены из мельчайших клеток. Основными исходными идеями клеточной теории были следующие положения.

  • Все ткани состоят из клеток.
  • Клетки растений и животных имеют общие принципы строения, так как возникают одинаковым путем.
  • Каждая отдельная клетка самостоятельна, а деятельность многоклеточного организма представляется суммой деятельности отдельных клеток.

С этого момента цитология стала самостоятельной наукой об общих закономерностях строения клеток.

Ко времени возникновения клеточной теории вопрос о том, как образуются клетки в организме, еще не был выяснен. Шлейден и Шванн считали, что клетки в организме возникают путем новообразования из первичного неклеточного вещества. Это представление было опровергнуто к середине XIX века.

В 1858 году немецкий медик и анатом Рудольф Вирхов представил убедительное доказательство того, что клетки возникают только путем воспроизведения себе подобных. Научный мир облетело его изречение: «Omnis cellula ex cellula» («Каждая клетка от клетки»).

Этим постулатом пополнилась клеточная теория, сформулированная ранее.

Создание клеточной теории явилось крупнейшим событием в биологии, одним из решающих доказательств единства всей живой природы.

Обобщение знаний о клетке в клеточной теории оживило цитологические исследования. Ученые стали изучать отдельные части клетки, ее химические вещества и протекающие в ней процессы. Эти открытия значительно обогатили знания о клетке.

В 1873 году естествоиспытатель и философ Ф. Энгельс, характеризуя значение клеточной теории, писал, что наряду с законом превращения энергии и эволюционной теорией Ч.

Дарвина «она является одним из трех великих открытий естествознания XIX века».

В 70-х годах XIX века у самых разных биологических объектов в клетках были обнаружены хромосомы.

В 1879–1882 годах немецкий гистолог Вальтер Флемминг описал митоз, вскоре появилась гипотеза о том, что наследуемые признаки заключаются в ядре.

В 1876 году был открыт клеточный центр, в 1894-м – митохондрии, в 1898-м – аппарат Гольджи. К концу XIX века было обнаружено большинство общих и специальных органоидов в цитоплазме клетки.

Эти открытия показали, что в цитоплазме совершаются разнообразные процессы, связанные с жизнедеятельностью и функциональной активностью клетки.

Крупный вклад в развитие учения о клетке внесли отечественные цитологи: в 1874 году Иван Дорофеевич Чистяков описал фазы митотического деления, в 1880 году Иван Николаевич Горожанкин провел исследование цитологических основ оплодотворения у хвойных растений, в 1898 году Сергей Гаврилович Навашин открыл явление двойного оплодотворения у цветковых растений, в 1882 году Илья Ильич Мечников открыл явление фагоцитоза у клеток. Учение И.И. Мечникова о фагоцитозе дало толчок развитию иммунологического направления в медицине.

Успехи в изучении клетки способствовали тому, что внимание биологов все больше концентрировалось на клетке как основной структурной единице живых организмов. Становилось все более очевидным, что изучение особенностей строения и функционирования клетки является фундаментальной областью биологических исследований.

Все это привело к тому, что в конце XIX века цитология выделилась в самостоятельную область биологии.

Источник: https://blgy.ru/history-cytology/

ЦИТОЛОГИЯ

Цитология ученые и их открытия
статьи

ЦИТОЛОГИЯ, наука о клетках – структурных и функциональных единицах почти всех живых организмов. В многоклеточном организме все сложные проявления жизни возникают в результате координированной активности составляющих его клеток. Задача цитолога – установить, как построена живая клетка и как она выполняет свои нормальные функции.

Изучением клеток занимаются также патоморфологи, но их интересуют изменения, происходящие в клетках во время болезни или после смерти.

Несмотря на то что учеными давно уже было накоплено немало данных о развитии и строении животных и растений, только в 1839 были сформулированы основные концепции клеточной теории и началось развитие современной цитологии.

Клетки – это самые мелкие единицы живого, о чем наглядно свидетельствует способность тканей распадаться на клетки, которые затем могут продолжать жить в «тканевой» или клеточной культуре и размножаться подобно крошечным организмам. Согласно клеточной теории, все организмы состоят из одной или многих клеток.

Из этого правила есть несколько исключений. Например, в теле слизевиков (миксомицетов) и некоторых очень мелких плоских червей клетки не отделены друг от друга, а образуют более или менее слитную структуру – т.н. синцитий.

Однако можно считать, что такое строение возникло вторично в результате разрушения участков клеточных мембран, имевшихся у эволюционных предков этих организмов. Многие грибы растут, образуя длинные нитевидные трубки, или гифы.

Эти гифы, часто разделенные перегородками – септами – на сегменты, тоже можно рассматривать как своеобразные вытянутые клетки. Из одной клетки состоят тела протистов и бактерий.

Между бактериальными клетками и клетками всех других организмов существует одно важное различие: ядра и органеллы («маленькие органы») бактериальных клеток не окружены мембранами, и поэтому эти клетки называют прокариотическими («доядерными»); все другие клетки называют эукариотическими (с «настоящими ядрами»): их ядра и органеллы заключены в мембраны. В этой статье рассматриваются только эукариотические клетки.

Открытие клетки

Изучение мельчайших структур живых организмов стало возможным лишь после изобретения микроскопа, т.е. после 1600. Первое описание и изображения клеток дал в 1665 английский ботаник Р.Гук: рассматривая тонкие срезы высушенной пробки, он обнаружил, что они «состоят из множества коробочек». Каждую из этих коробочек Гук назвал клеткой («камерой»).

Итальянский исследователь М.Мальпиги (1674), голландский ученый А. ван Лёвенгук, а также англичанин Н.Грю (1682) вскоре привели множество данных, демонстрирующих клеточное строение растений.

Однако ни один из этих наблюдателей не понял, что действительно важным веществом был наполнявший клетки студенистый материал (впоследствии названный протоплазмой), а казавшиеся им столь важными «клетки» были просто безжизненными целлюлозными коробочками, в которых содержалось это вещество. До середины 19 в.

в трудах ряда ученых уже просматривались зачатки некой «клеточной теории» как общего структурного принципа. В 1831 Р.Броун установил существование в клетке ядра, но не сумел оценить всю важность своего открытия. Вскоре после открытия Броуна несколько ученых убедились в том, что ядро погружено в полужидкую протоплазму, заполняющую клетку.

Первоначально основной единицей биологической структуры считали волокно. Однако уже в начале 19 в. почти все стали признавать непременным элементом растительных и животных тканей структуру, которую называли пузырьком, глобулой или клеткой.

Создание клеточной теории

Количество прямых сведений о клетке и ее содержимом чрезвычайно возросло после 1830, когда появились усовершенствованные микроскопы. Затем в 1838–1839 произошло то, что называют «завершающим мазком мастера». Ботаник М.Шлейден и анатом Т.Шванн практически одновременно выдвинули идею клеточного строения.

Шванн предложил термин «клеточная теория» и представил эту теорию научному сообществу. Согласно клеточной теории, все растения и животные состоят из сходных единиц – клеток, каждая из которых обладает всеми свойствами живого. Эта теория стала краеугольным камнем всего современного биологического мышления.

Открытие протоплазмы

Сначала незаслуженно большое внимание уделяли стенкам клетки. Однако еще Ф.Дюжарден (1835) описал живой студень у одноклеточных организмов и червей, назвав его «саркодой» (т.е. «похожим на мясо»). Эта вязкая субстанция была, по его мнению, наделена всеми свойствами живого.

Шлейден тоже обнаружил в растительных клетках мелкозернистое вещество и назвал его «растительной слизью» (1838). Спустя 8 лет Г.фон Моль воспользовался термином «протоплазма» (примененным в 1840 Я.

Пуркинье для обозначения субстанции, из которой формируются зародыши животных на ранних стадиях развития) и заменил им термин «растительная слизь». В 1861 М.Шультце обнаружил, что саркода содержится также в тканях высших животных и что это вещество идентично как структурно, так и функционально т.н. протоплазме растений.

Для этой «физической основы жизни», как определил ее впоследствии Т.Гексли, был принят общий термин «протоплазма». Концепция протоплазмы в свое время сыграла важную роль; однако уже давно стало ясно, что протоплазма не однородна ни по своему химическому составу, ни по структуре, и этот термин постепенно вышел из употребления.

В настоящее время главными компонентами клетки обычно считают ядро, цитоплазму и клеточные органеллы. Сочетание цитоплазмы и органелл практически соответствует тому, что имели в виду первые цитологи, говоря о протоплазме.

Основные свойства живых клеток

Изучение живых клеток пролило свет на их жизненно важные функции. Было установлено, что последние можно разбить на четыре категории: подвижность, раздражимость, метаболизм и размножение.

Подвижность проявляется в различных формах: 1) внутриклеточная циркуляция содержимого клетки; 2) перетекание, обеспечивающее перемещение клеток (например, клеток крови); 3) биение крошечных протоплазматических выростов – ресничек и жгутиков; 4) сократимость, наиболее развитая у мышечных клеток.

Раздражимость выражается в способности клеток воспринимать стимул и реагировать на него импульсом, или волной возбуждения. Эта активность выражена в наивысшей степени у нервных клеток.

Метаболизм включает все превращения вещества и энергии, протекающие в клетках.

Размножение обеспечивается способностью клетки к делению и образованию дочерних клеток. Именно способность воспроизводить самих себя и позволяет считать клетки мельчайшими единицами живого. Однако многие высокодифференцированные клетки эту способность утратили.

Цитология как наука

В конце 19 в. главное внимание цитологов было направлено на подробное изучение строения клеток, процесса их деления и выяснение их роли как важнейших единиц, обеспечивающих физическую основу наследственности и процесса развития.

Развитие новых методов

Вначале при изучении деталей строения клеток приходилось полагаться главным образом на визуальное исследование мертвого, а не живого материала.

Необходимы были методы, которые позволяли бы сохранять протоплазму, не повреждая ее, изготавливать достаточно тонкие срезы ткани, проходящие и через клеточные компоненты, а также окрашивать срезы, чтобы выявлять детали клеточного строения.

Такие методы создавались и совершенствовались в течение всей второй половины 19 в. Совершенствовался и сам микроскоп.

К числу важных достижений в его устройстве следует отнести: осветитель, расположенный под столиком, для фокусировки пучка света; апохроматический объектив для корректировки недостатков окрашивания, искажающих изображение; иммерсионный объектив, дающий более четкое изображение и увеличение в 1000 раз и более.

Было также обнаружено, что основные красители, например гематоксилин, обладают сродством к содержимому ядра, а кислотные красители, например эозин, окрашивают цитоплазму; это наблюдение послужило основой для создания разнообразных методов контрастного или дифференциального окрашивания. Благодаря этим методам и усовершенствованным микроскопам постепенно накапливались важнейшие сведения о строении клетки, ее специализированных «органах» и различных неживых включениях, которые клетка либо сама синтезирует, либо поглощает извне и накапливает.

Закон генетической непрерывности

Фундаментальное значение для дальнейшего развития клеточной теории имела концепция генетической непрерывности клеток. В свое время Шлейден считал, что клетки образуются в результате своего рода кристаллизации из клеточной жидкости, а Шванн в этом ошибочном направлении пошел еще дальше: по его мнению, клетки возникали из некой «бластемной» жидкости, находящейся вне клеток.

Сначала ботаники, а затем и зоологи (после того как разъяснились противоречия в данных, полученных при изучении некоторых патологических процессов) признали, что клетки возникают только в результате деления уже существующих клеток. В 1858 Р.Вирхов сформулировал закон генетической непрерывности в афоризме «Omnis cellula e cellula» («Каждая клетка из клетки»).

Когда была установлена роль ядра в клеточном делении, В.Флемминг (1882) перефразировал этот афоризм, провозгласив: «Omnis nucleus e nucleo» («Каждое ядро из ядра»). Одним из первых важных открытий в изучении ядра было обнаружение в нем интенсивно окрашивающихся нитей, названных хроматином.

Последующие исследования показали, что при делении клетки эти нити собираются в дискретные тельца – хромосомы, что число хромосом постоянно для каждого вида, а в процессе клеточного деления, или митоза, каждая хромосома расщепляется на две, так что каждая клетка получает типичное для данного вида число хромосом.

Следовательно, афоризм Вирхова можно распространить и на хромосомы (носители наследственных признаков), поскольку каждая из них происходит от предсуществующей.

В 1865 было установлено, что мужская половая клетка (сперматозоид, или спермий) представляет собой полноценную, хотя и высокоспециализированную клетку, а спустя 10 лет О.Гертвиг проследил путь сперматозоида в процессе оплодотворения яйцеклетки. И наконец, в 1884 Э.

ван Бенеден показал, что в процессе образования как сперматозоида, так и яйцеклетки происходит модифицированное клеточное деление (мейоз), в результате которого они получают по одному набору хромосом вместо двух.

Таким образом, каждый зрелый сперматозоид и каждая зрелая яйцеклетка содержат лишь половинное число хромосом по сравнению с остальными клетками данного организма, и при оплодотворении происходит просто восстановление нормального числа хромосом.

В итоге оплодотворенная яйцеклетка содержит по одному набору хромосом от каждого из родителей, что является основой для наследования признаков и по отцовской, и по материнской линии. Кроме того, оплодотворение стимулирует начало дробления яйцеклетки и развитие нового индивида.

Представление о том, что хромосомы сохраняют свою идентичность и поддерживают генетическую непрерывность от одного поколения клеток к другому, окончательно сформировалось в 1885 (Рабль).

Вскоре было установлено, что хромосомы качественно отличаются друг от друга по своему влиянию на развитие (Т.Бовери, 1888). Начали появляться также экспериментальные данные в пользу высказанной ранее гипотезы В.

Ру (1883), согласно которой даже отдельные части хромосом влияют на развитие, структуру и функционирование организма.

Таким образом, еще до конца 19 в. было сделано два важных заключения. Одно состояло в том, что наследственность есть результат генетической непрерывности клеток, обеспечиваемой клеточным делением.

Другое – что существует механизм передачи наследственных признаков, который находится в ядре, а точнее – в хромосомах.

Было установлено, что благодаря строгому продольному расщеплению хромосом дочерние клетки получают совершенно такую же (как качественно, так и количественно) генетическую конституцию, как исходная клетка, от которой они произошли.

Законы наследственности

Второй этап в развитии цитологии как науки охватывает 1900–1935. Он наступил после того, как в 1900 были вторично открыты основные законы наследственности, сформулированные Г.Менделем в 1865, но не привлекшие к себе внимания и надолго преданные забвению.

Цитологи, хотя и продолжали заниматься изучением физиологии клетки и такими ее органеллами, как центросома, митохондрии и аппарат Гольджи, основное внимание сосредоточили на строении хромосом и их поведении.

Проводившиеся в это же время эксперименты по скрещиванию быстро увеличивали объем знаний о способах наследования, что привело к становлению современной генетики как науки. В результате возник «гибридный» раздел генетики – цитогенетика.

Достижения современной цитологии

Новые методы, особенно электронная микроскопия, применение радиоактивных изотопов и высокоскоростного центрифугирования, появившиеся после 1940-х годов, позволили достичь огромных успехов в изучении строения клетки.

В разработке единой концепции физико-химических аспектов жизни цитология все больше сближается с другими биологическими дисциплинами.

При этом ее классические методы, основанные на фиксации, окрашивании и изучении клеток под микроскопом, по-прежнему сохраняют практическое значение.

Цитологические методы используются, в частности, в селекции растений для определения хромосомного состава растительных клеток. Такие исследования оказывают большую помощь в планировании экспериментальных скрещиваний и оценке полученных результатов.

Аналогичный цитологический анализ проводится и на клетках человека: он позволяет выявить некоторые наследственные заболевания, связанные с изменением числа и формы хромосом. Такой анализ в сочетании с биохимическими тестами используют, например, при амниоцентезе для диагностики наследственных дефектов плода.

См. также ГЕНЕТИЧЕСКОЕ КОНСУЛЬТИРОВАНИЕ; НАСЛЕДСТВЕННОСТЬ.

Однако самое важное применение цитологических методов в медицине – это диагностика злокачественных новообразований. В раковых клетках, особенно в их ядрах, возникают специфические изменения, распознаваемые опытными патоморфологами. См. также РАК.

Источник: https://www.krugosvet.ru/enc/nauka_i_tehnika/biologiya/TSITOLOGIYA.html

Все о медицине
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: