Что такое экспрессивность гена

Содержание
  1. Экспрессия генов – это что такое? Определение понятия
  2. Общая информация
  3. О генах
  4. Теория оперона
  5. Организация хроматина
  6. Изменяем количество генов
  7. Перестройка генов
  8. Изменение РНК
  9. Изменение стабильности мРНК
  10. Длительность существования
  11. Заключение
  12. Определение рецептора PD-L1 в ткани опухоли методом ИГХ
  13. Что такое экспрессия
  14. Что такое экспрессия генов?
  15. Экспрессия в психологии
  16. Перевод слова экспрессия
  17. Какой бывает экспрессия (прилагательные)?
  18. Что может экспрессия? Что можно сделать с экспрессией (глаголы)?
  19. Ассоциации к слову экспрессия
  20. Синонимы слова экспрессия
  21. Сфера употребления слова экспрессия
  22. Экспрессия в искусстве
  23. Зеркало личности
  24. Универсальный язык
  25. Экспрессия генов
  26. Секреты эпигенетики: как факторы образа жизни влияют на гены
  27. Эпигенетика: изменения в образе жизни – ключ к изменению генов
  28. Длительность результатов эпигенетических изменений и будущее эпигенетики
  29. Стресс от бабушки, супермышцы и запасные органы. Что такое эпигенетика и как она работает
  30. Клетка как молекулярный наноробот
  31. «И тысячу за знание»

Экспрессия генов – это что такое? Определение понятия

Что такое экспрессивность гена

Что такое экспрессия генов? Какова её роль? Как работает механизм экспрессии генов? Какие перспективы он перед нами открывает? Как происходит регуляция экспрессии генов у эукариот и прокариот? Вот краткий перечень вопросов, которые будут рассмотрены в рамках данной статьи.

Общая информация

Экспрессия генов – это название процесса переноса генетической информации от ДНК посредством РНК к белкам и полипептидам. Давайте для понимания сделаем небольшое отступление. Что такое гены? Это линейные полимеры ДНК, что являются соединёнными в длинную цепь.

С помощью белка хроматина они образуют хромосомы. Если говорить о человеке, то у нас их сорок шесть. В них находится примерно 50 000-10 000 генов и 3,1 миллиарда пар нуклеотидов. Как же здесь ориентируются? Длина участков, с которыми ведётся работа, указывается в тысячах и миллионах нуклеотидов.

Одна хромосома содержит около 2000-5000 генов. В несколько ином выражении – около 130 миллионов пар нуклеотидов. Но это только очень приблизительная оценка, которая более-менее верна для значительных последовательностей. Если работать на коротких участках, то соотношение будет нарушаться.

Также на это может повлиять пол организма, над материалом которого ведётся работа.

О генах

Они имеют самую разнообразную длину. Вот, например, глобин – это 1500 нуклеотидов. А дистрофин – уже целых 2 миллиона! Их регуляторные цис-элементы могут быть удалены от гена на значительное расстояние.

Так, у глобина они находятся на расстоянии в 50 и 30 тысяч нуклеотидов в 5'- и 3'-направлении соответственно. Наличие подобной организации значительным образом затрудняет нам определение границ между ними.

Также гены содержат в себе значительное количество высокоповторяющихся последовательностей, функциональные обязанности которых нам ещё не понятны.

Для понимания их структуры можно представить, что 46 хромосом являются отдельными томами, в которых находится информация. Они сгруппированы в 23 пары. Один из двух элементов наследуется от родителя.

“Текст”, что находится в “томах”, многократно “перечитывался” тысячами поколений, что привносило в него много ошибок и изменений (называемых мутациями). И все они наследуются потомством.

Теперь есть достаточно теоретической информации, чтобы начать разбираться с тем, что собой являет экспрессия генов. Это ведь является главной темой данной статьи.

Теория оперона

Она строится на генетических исследованиях индукции β-галактозидазы, которая участвовала в гидролитическом расщеплении лактозы. Сформулирована она была Жаком Моно и Франсуа Жакобом. Данная теория объясняет механизм контроля над синтезом белков у прокариот.

Также важная роль отводится и транскрипции. Теория гласит, что гены белков, которые функционально тесно связаны в метаболических процессах, часто группируются вместе. Они создают структурные единицы, названные оперонами.

Их важность в том, что все гены, которые входят в него, экспрессируются согласованно. Иными словами, они все могут быть транскрибированы, или же никого из них нельзя «прочитать». В таких случаях оперон считается активным или пассивным.

Уровень экспрессии генов может меняться, только если есть набор отдельных элементов.

Давайте представим, что у нас есть клетка, которая в качестве источника своего роста использует углерод глюкозу. Если её поменять на дисахарид лактозу, то через несколько минут можно будет зафиксировать, что она адаптировалась к условиям, которые были изменены.

Этому существует такое объяснение: клетка может работать обоими источниками роста, но один из них является более подходящим. Поэтому существует «прицел» на более легкообрабатываемое химическое соединение. Но если оно пропадает и на смену ему появляется лактоза, то ответственная РНК-полимераза активируется и начинает оказывать своё влияние на производство необходимого белка.

Это больше теория, а сейчас давайте поговорим о том, как же собственно происходит экспрессия генов. Это весьма увлекательно.

Организация хроматина

Материал из данного абзаца представляет собой модель дифференцированной клетки многоклеточного организма.

В ядрах хроматин уложен таким образом, что для транскрипции доступна только малая часть генома (около 1 %).

Но, несмотря на это, благодаря разнообразию клеток и сложности идущих в них процессов мы можем влиять на них. На данный момент для человека доступным является такое влияние на организацию хроматина:

  1. Изменять количество структурных генов.
  2. Эффективно транскрибировать разные участки кода.
  3. Перестраивать гены в хромосомах.
  4. Вносить модификации и синтезировать полипептидные цепи.

Но эффективная экспрессия гена-мишени достигается в результате четкого соблюдения технологии. Неважно, с чем ведётся работа, пускай даже эксперимент идёт над небольшим вирусом. Главное – это придерживаться составленного плана вмешательства.

Изменяем количество генов

Как это можно реализовать? Представим, что нас интересует влияние на экспрессию генов. В качестве опытного образца мы взяли материал эукариота. Он обладает высокой пластичностью, поэтому можем внести такие изменения:

  1. Увеличить число генов. Используется в тех случаях, когда необходимо, чтобы организм увеличил синтез определённого продукта. В подобном амплифицированном состоянии находятся многие полезные элементы человеческого генома (например, рРНК, тРНК, гистоны и так далее). Такие участки могут иметь тандемное расположение в рамках хромосомы и даже выходить за их рамки в количестве от 100 тысяч до 1 миллиона пар нуклеотидов. Давайте рассмотрим практическое применение. Интерес для нас представляет ген металлотионеина. Его белковый продукт может связывать тяжелые металлы вроде цинка, кадмия, ртути и меди и, соответственно, защищать организм от отравления ими. Его активация может быть полезной людям, которые работают в небезопасных условиях. Если у человека наблюдается повышенная концентрация ранее упомянутых тяжелых металлов, то активация гена происходит постепенно автоматически.
  2. Уменьшить число генов. Это довольно редко применяемый способ регуляции. Но и здесь можно привести примеры. Один из наиболее известных – это эритроциты. Когда они созревают, то разрушается ядро и носитель теряет свой геном. Подобное в процессе созревания проходят и лимфоциты, а также плазматические клетки различных клонов, что синтезируют секретируемые формы иммуноглобулинов.

Перестройка генов

Важной является возможность перемещения и объединения материала, при котором он будет способен к транскрипции и репликации. Данный процесс получил название генетической рекомбинации. С помощью каких механизмов она является возможной? Давайте рассмотрим ответ на этот вопрос на примере антител. Они создаются В-лимфоцитами, что принадлежат какому-то определённому клону.

И в случае попадания в тело антигена, на который есть антитело с комплементарным активным центром, произойдёт их присоединение с последующей пролиферацией клетки. Почему же у организма человека есть возможность создавать такое разнообразие белков? Такая возможность обеспечивается рекомбинацией и соматическими мутациями.

Но это может быть и следствие искусственных изменений в структуре ДНК.

Изменение РНК

Экспрессия генов – это процесс, в котором значительную роль играет рибонуклеиновая кислота. Если рассматривать мРНК, то необходимо заметить, что после транскрипции первичная структура может меняться. Последовательность нуклеотидов в генах одинаковая.

А вот в разных тканях мРНК могут появляться замены, вставки или попросту будут происходить выпадения пар. В качестве примера со стороны природы можно привести апопротеин В, создаваемый в клетках тонкого кишечника и печени. В чем же разница редактирования? Версия, создаваемая кишечником, имеет 2152 аминокислоты.

Тогда как вариант печени может похвастаться содержанием 4563 остатков! И несмотря на такое различие, у нас имеется именно апопротеин В.

Изменение стабильности мРНК

Мы уже почти пришли к тому, чтобы можно было заняться белками и полипептидами. Но давайте перед этим ещё рассмотрим, как может закрепляться стабильность мРНК. Для этого первоначально она должна покинуть ядро и выйти из цитоплазмы. Осуществляется это благодаря имеющимся порам. Большое количество мРНК будет расщеплено нуклеазами.

Те же, что избегут данной участи, организуют комплексы с белками. Время жизни эукариотической мРНК колеблется в широком диапазоне (до нескольких дней). Если стабилизировать мРНК, то при фиксированной скорости можно будет наблюдать, что увеличивается количество новообразованного белкового продукта.

Уровень экспрессии генов при этом не изменится, но, что более важно, организм будет действовать с большей эффективностью. С помощью методов молекулярной биологии можно кодировать конечный продукт, который будет иметь значительную продолжительность жизни.

Так, к примеру, возможным является создание β-глобина, функционирующего примерно десять часов (для него это весьма много).

Вот и рассмотрена в общем и целом система экспрессии генов. Сейчас осталось только дополнить имеющиеся знания информацией о том, как быстро происходят процессы, а также насколько долго живут белки. Скажем так, проведём контроль экспрессии генов.

Следует отметить, что влияние на скорость не считается основным способом регуляции разнообразия и количества белкового продукта. Хотя её изменение для достижения данной цели всё же использовалось. В качестве примера можно привести синтез белкового продукта в ретикулоцитах. Кроветворные клетки на уровне дифференцировки лишены ядра (а значит, и ДНК).

Уровни регуляции экспрессии генов вообще строятся в зависимости от возможностей какого-то соединения активно влиять на осуществляемые процессы.

Длительность существования

Когда же белок синтезирован, то время, в течение которого он будет жить, зависит от протеаз. Здесь нельзя точно назвать сроки, поскольку диапазон в данном случае составляет от нескольких часов до пары лет. Скорость расщепления белка широко варьируется в зависимости от того, в какой клетке он находится.

Ферменты, которые могут катализировать процессы, как правило, быстро «употребляются». Из-за этого они также создаются организмом в больших количествах. Также на срок жизни белка может оказать влияние физиологическое состояние организма. Также если был создан дефектный продукт, то он будет быстро ликвидирован защитной системой.

Таким образом, можно уверенно сказать, что единственное, о чем мы можем судить, – это стандартное время жизни, полученное в лабораторных условиях.

Заключение

Данное направление является очень перспективным. Например, экспрессия чужеродных генов может помочь вылечить наследственные болезни, а также ликвидировать негативные мутации. Несмотря на наличие обширных знаний по этой теме, можно уверенно сказать, что человечество ещё только находится в самом начале пути.

Генетическая инженерия совсем недавно научилась выделять необходимые участки нуклеотидов. 20 лет назад произошло одно из самых больших событий данной науки – была создана овечка Долли. Сейчас же ведутся исследования с человеческими эмбрионами. Можно с уверенностью сказать, что мы уже на пороге будущего, где нет болезней и физиологических страданий.

Но прежде чем мы там окажемся, необходимо будет очень хорошо поработать на благо процветания.

Источник: https://FB.ru/article/256575/ekspressiya-genov---eto-chto-takoe-opredelenie-ponyatiya

Определение рецептора PD-L1 в ткани опухоли методом ИГХ

Что такое экспрессивность гена

Экспрессия – это понятие синонимичное выразительности, интенсивности, яркости проявления и преподнесения своего эмоционального состояния, чувств, переживаний.

Кроме того термин экспрессия может использоваться для обозначения непрямых посланий и мыслей человека в невербальной форме (слезы, истерика, восклицания и прочее). Т.е.

экспрессия затрагивает не описательную сторону состояния, когда человек способен отрефлексировать происходящее, а непосредственный момент бытия, проживания эмоции, ее реализации во внешнем пространстве.

Слово экспрессия значение свое реализует исключительно на внешнем плане проявления личности.

Сила и качество личности во многом обусловлено врожденными характеристиками, связанными с темпераментом, силой и подвижностью нервной системы, темпом, амплитудой и интенсивностью психических процессов.

Выражает экспрессия значение для человека другого или произошедшего события, причем выражает, как степень важности, так и направление (позитивное или негативное).

Экспрессивные компоненты проявления во внешнем мире отражают статус личности (принятие обществом располагает к большей экспрессивности), а также принадлежность к той или иной культуре, общности (например, итальянцы более экспрессивны, чем эстонцы).

Уровень развития коммуникативных навыков также проявляется через степень развитости экспрессивных проявлений и их адекватного использования для создания социально-приемлемых форм поведения.

Кроме таких внешних факторов, экспрессия служит прекрасным регулятором внутреннего состояния личности, предоставляя способ эмоциональной разрядки при стрессах.

Экспрессия во многом служит для контроля и регулировки отношений, позволяя устанавливать определенную оптимальную близость дистанции, изменять характер взаимодействия.

Так, экспрессивно проявленная злость оттолкнет нежелательного собеседника, а столь же сильно выраженная радость от появления человека будет способствовать сближению.

Яркое выражение собственных чувств позволяет придавать общению определенную форму: конфликта, прояснения, взаимодействия, согласия, подчинения и пр.

Что такое экспрессия

Латинское слово ex-pressio, то есть — выдавливание, выжимание, нагнетание, заставляет посмотреть на знакомое нам понятие с другой стороны. То есть буквально слово экспрессия означало насильственное вызывание каких-либо чувств и эмоций.

Наши словари трактуют это яркое слово иначе и ближе для привычного восприятия — выразительность, чувственность, эмоциональность на грани обнажения личности.

Но по факту экспрессия — это довольно капризный диагноз, который выносится в определенном соответственно параметрам, принятым в этом обществе за норму.

Допустим, нет ничего предосудительного для русского человека в том, чтобы, здороваясь со знакомым, придержать его руку в своей.

Для истинного британца, как-то не воспитанного на дружественных телесных контактах, такой жест будет выглядеть экспрессивным, если не сказать — ненормальным.

Что такое экспрессия генов?

Каждый из генов нашего организма отвечает за создание определенного продукта, но выработка этого продукта из расчета на один ген – различна. Некоторые из них вырабатывают много того, что должны, другие – недостаточно. И как раз это и определяет степень (концепцию) экспрессии гена.

Экспрессия – это скорость (например – поезд-экспресс) в нашем случае – это активность генов. Экспрессия некоторых генов находится на невысоком уровне, а у других – степень экспрессии высокая.

Экспрессия генов не измеряется в категориях – хорошая экспрессия или плохая экспрессия, каждый из генов имеет свою собственную экспрессию.

Генетики – это ученые, которые изучают гены. И их очень интересует возможность измерить величину экспрессии каждого гена. И для этого в научной лаборатории NuSkin совместно с лабораторией LifeGenTechnology была разработана специальная цветная шкала, которая позволяет хорошо укладывать в различные цветовые комбинации величину экспрессии генов.

Если экспрессия гена находиться на невысоком уровне, то он окрашивается в один из цветов зеленой части спектра. А если ген имеет высокую экспрессию, то при нанесении на эту цветовую палитру он окрашивается в красной части спектра.

Вы помните, что я упоминал, что в каждой ДНК находиться около 20 тысяч генов. Это может показаться безумием, но для разработки нашей технологии ageLOC нам приходиться иметь дело со всеми 20 тысячами генов. Не просто каждый ген обладает собственным размером экспрессии, собственной величиной экспрессии, экспрессия наших генов различна в разные периоды жизни человека.

На слайде показаны два разных гена, один имеет низкую экспрессию, другой – высокую, и далее мы видим, как сильно меняется величина экспрессии генов, когда возраст человека увеличивается, может получиться прямо противоположная картинка.

Ген, который имел высокую экспрессию, когда человек был молод, с течением времени, в результате старения, его экспрессия понижается, а экспрессия гена, который был менее активен в молодости, возрастает.

Таким образом становиться понятно, что важно не просто изучать степени экспрессии генов, велика она или мала, важно обеспечить сохранение того уровня экспрессии генов, который был у человека в молодости.

И на этой цветовой палитре очень хорошо видно, что ген, у которого была низкая активность в молодом возрасте, с возрастом повышается, и аналогично, ген, у которого была высокая экспрессия в молодости, с возрастом – снижается, перемещаясь в другую часть спектра.

Это та концепция, которая называется “Концепцией Экспрессии Генов”, и она имеет исключительную важность для понимания концепции ageLOC в целом.

Экспрессия в психологии

Психология не считает, что экспрессия — такое чувственно-эмоциональное поведенческое проявление, ведь человек, демонстрируя себя, преподносит значительную часть своей личности не в словах или поступках, а в собственном облике.

Сила чувств, наше самовыражение, основанное на прочном фундаменте из убеждений, привычек, и «эмоциональной слепоте» (зрительно оцениваем окружающих, но не себя), — все это откладывается на манере одеваться, носить макияж, опрятности или неряшливом виде.

Экспрессивная личность присутствует в каждом, ведь синонимами экспрессии являются колоритность, сочность, живость натуры, а нет ни одного человека, периодически не испытывающего в себе яркого подъема, силы, рельефности — каждому знакомо это чувство, горячей волной поднимающееся изнутри. Только кому-то достаточно выпить чашечку кофе, чтобы подняться на высоту эмоций, а кому-то нужно совершить внутреннее преодоление, добиться признания.

Перевод слова экспрессия

Мы предлагаем Вам перевод слова экспрессия на английский, немецкий и французский языки. Реализовано с помощью сервиса «Яндекс.Словарь»

  • На английский
  • На немецкий
  • На французский
  • expression — выражение вектор экспрессии — expression vector
  • expressiveness
    — выразительность
    • Expression экспрессии генов — Expression von Genen
    • эмоциональная экспрессия — emotionaler Ausdruck
  • Ausdruckskraft
    — экспрессивность
    • expression — экспрессивность

    Какой бывает экспрессия (прилагательные)?

    Подбор прилагательных к слову на основе русского языка.

    эмоциональной телесной дополнительной музыкальной полной истинной единственной чрезвычайной мучительной внутренней свойственной яркой потрясающей данной визуальной характерной скальной нужной излишней лицевой неистовой нарастающей всякой бешеной изнеженной естественной поразительной спонтанной высокомерной никакой своеобразной поведенческой удивительной внешней острой немалой гормональной привычной невероятной максимальной резкой аффективной вербальной последней духовной мрачной лаконичной выраженной недостаточной непередаваемой яростной мощной образной особой общей первобытной буйной западной пластической ранней персональной сплошной типической художественной

    Что может экспрессия? Что можно сделать с экспрессией (глаголы)?

    Подбор глаголов к слову на основе русского языка.

    уйти заголосить впечатлять вещать перевернуть нарастать спеть высказать раствориться рассказать пропасть приняться являться поражать воскликнуть отодвигать повторить захватить всплеснуть

    Ассоциации к слову экспрессия

    тело форма голос рука ткань лицо совокупность пустота человек друг наука разговор паз африка удар туловище вид слово выражение заголовок интонация область звук

    Синонимы слова экспрессия

    внятность выразительность интенсивность прозрачность рельефность светлость ясность определенность отчетливость

    Сфера употребления слова экспрессия

    Генетика Иммунология Медицина Молекулярная биология Молекулярная генетика

    Экспрессия в искусстве

    Самое наглядное и выразительно проявление экспрессии мы встречаем в искусстве, будь то волнующая картина, скрипичный концерт или зажигательный танец. Для оценки произведения как примера экспрессии не нужно вдаваться в анализ. Если вы ощутили в себе душевное движение, значит, то, что вызвало его, — экспрессивно в той или иной мере.

    С его «живыми» иконами, Иероним Босх, переворачивающий сознание невиданной жутью своих полотен, — экспрессионисты. Майкл Флетли, почти забытый Король Айседора Дункан — экспрессионисты. Эпохой экспрессионизма считают расцвет готического направления в Западной Европе, а сейчас того же титула удостоились творческие плоды направления hi-tech.

    Зеркало личности

    Внутреннюю экспрессию спрятать невозможно, потому что человек не способен отказаться от своей личности. Злой нелюдимый затворник сможет поменять истинное лицо на маску добродушного «соседушки», но не пройдет и десяти минут, как угрюмость начнет продираться сквозь улыбку. Это то же самое, как если калека вдруг начнет притворяться здоровым. Поверят ли ему?

    Что такое экспрессия и как она работает, хорошо наблюдать на революционно настроенных людях, генераторах энергии и маятниках, раскачивающих весь окружающий мир вокруг себя.

    Их секрет в направленном действии своего душевного подъема, в том, что свою искру они несут с уверенным пониманием того, что она светит и греет, а не стыдливо пряча ее под полой. Поэтому основной синоним экспрессии, стоящий на первом месте, — это яркость.

    Яркая личность всегда экспрессивна, ибо обнаженность чувств есть зеркало — всякий глядящий в него увидит суть. В зеркало же, занавешенное комплексами и предрассудками, затянутое паутиной, и глядеть никому не хочется.

    Универсальный язык

    Лексическое значение экспрессии — это выразительное, яркое проявление эмоций и личных качеств человека.

    Экспрессия здорового человека всегда адаптивна к обществу, образующему культурную ячейку. Смех — нормальная реакция на шутку, и он будет понят как жителем Африки, так и австралийским поселенцем.

    Но продолжительность естественной реакции на анекдот, сила ее проявления и характер дополнительных жестов регулируются принципами допустимого в конкретной среде.

    Относится это и к прочим примерам универсального языка экспрессивности: плачу, грусти, радости, восторгу, страху.

    Регулируемые социумом нормы не кажутся сильно ограничивающими, но лишь потому, что каждый из нас воспитан в понятиях того, что позволительно, а что нет. Люди, внутренний мир которых не вписывается в установленные рамки, и есть истинные экспрессионисты.

    Экспрессия генов

    Что такое экспрессия генов, можно понять, только зная приблизительное строение клетки и ту информацию, которую она несет.

    Любой человек — из плотно подогнанных клеток, и всего их в пределах 50 трлн. Внутри каждой клетки находится ядро, но само по себе оно только оболочка для ценного набора ДНК, образующего цепочку вокруг концентрата нашей личности — хромосомы.

    Информация в хромосоме — это сведения о цвете наших глаз, о форме ногтей, о сухости или жирности кожи. Эти сведения не слиты в единый резервуар, а строго разделены на кирпичики — гены. Если только представить, что комплект каждой клетки содержит 20 тыс. генов, то становится понятной сложность каждой личности в отдельности.

    Мы просто обязаны быть индивидуальностями, обладая таким спектром противопоставлений.

    Как и у людей, у каждого из генов есть своя обязанность, которую он «вывозит» или нет. Кто-то регулярно совершает переработку, а кто-то скромно отмалчивается в стороне.

    И это и есть, собственно, экспрессия генов — характер их активности.

    Это нельзя назвать отклонением — невозможно всем работать с одинаковой скоростью, и неизменно часть генов будет обладать высокой экспрессией, а часть — низкой. Это не хорошо и не плохо, это абсолютная норма.

    Источник: https://knyazhinskaya.ru/chelovek/ekspressivnyj-eto-kakoj.html

    Секреты эпигенетики: как факторы образа жизни влияют на гены

    Что такое экспрессивность гена

    Эпигенетика – относительно новая отрасль генетики, которую называют одним из наиболее важных биологических открытий с момента обнаружения ДНК.

    Раньше считалось, что набор генов, с которым мы рождаемся, необратимо определяет нашу жизнь.

    Однако теперь известно, что гены можно «включать» и «выключать», а также добиться их большей или меньшей экспрессии под воздействием различных факторов образа жизни.

    Estet-portal.com расскажет, что такое эпигенетика, как она работает, и что Вы можете сделать, чтобы повысить шансы на выигрыш в «лотерею здоровья».

    Эпигенетика – наука, которая изучает процессы, приводящие к изменению активности генов без изменения последовательности ДНК. Проще говоря, эпигенетика изучает воздействие внешних факторов на активность генов.

    В ходе проекта «Геном человека» было идентифицировано 25,000 генов в человеческой ДНК. ДНК можно назвать кодом, который организм использует для построения и перестройки самого себя. Однако генам и самим нужны «инструкции», по которым они определяют необходимые действия и время их выполнения.

    Эпигенетические модификации и являются теми самыми инструкциями.

    Существует несколько видов таких модификаций, однако двумя основными из них являются те, которые затрагивают метильные группы (углерод и водород) и гистоны (белки).

    Чтобы понять, как работают модификации, представим, что ген – это лампочка. Метильные группы действуют в роли выключателя света (т.е. гена), а гистоны – в качестве регулятора силы света (т.е. они регулируют уровень активности генов). Так вот, считается, что у человека есть четыре миллиона таких выключателей, которые приводятся в действие под влиянием образа жизни и внешних факторов.

    Ключом к пониманию влияния внешних факторов на активность генов стали наблюдения за жизнью однояйцевых близнецов. Наблюдения показали, насколько сильными могут быть изменения в генах таких близнецов, ведущих разный образ жизни в разных внешних условиях.

    Эпигенетика: изменения в образе жизни – ключ к изменению генов

    Эпигенетика – относительно новая отрасль генетики, которую называют одним из наиболее важных биологических открытий с момента обнаружения ДНК.

    Раньше считалось, что набор генов, с которым мы рождаемся, необратимо определяет нашу жизнь.

    Однако теперь известно, что гены можно «включать» и «выключать», а также добиться их большей или меньшей экспрессии под воздействием различных факторов образа жизни.

    Estet-portal.com расскажет, что такое эпигенетика, как она работает, и что Вы можете сделать, чтобы повысить шансы на выигрыш в «лотерею здоровья».

    Эпигенетика – наука, которая изучает процессы, приводящие к изменению активности генов без изменения последовательности ДНК. Проще говоря, эпигенетика изучает воздействие внешних факторов на активность генов.

    В ходе проекта «Геном человека» было идентифицировано 25,000 генов в человеческой ДНК. ДНК можно назвать кодом, который организм использует для построения и перестройки самого себя. Однако генам и самим нужны «инструкции», по которым они определяют необходимые действия и время их выполнения.

    Эпигенетические модификации и являются теми самыми инструкциями.

    Существует несколько видов таких модификаций, однако двумя основными из них являются те, которые затрагивают метильные группы (углерод и водород) и гистоны (белки).

    Чтобы понять, как работают модификации, представим, что ген – это лампочка. Метильные группы действуют в роли выключателя света (т.е. гена), а гистоны – в качестве регулятора силы света (т.е. они регулируют уровень активности генов). Так вот, считается, что у человека есть четыре миллиона таких выключателей, которые приводятся в действие под влиянием образа жизни и внешних факторов.

    Ключом к пониманию влияния внешних факторов на активность генов стали наблюдения за жизнью однояйцевых близнецов. Наблюдения показали, насколько сильными могут быть изменения в генах таких близнецов, ведущих разный образ жизни в разных внешних условиях.

    По идее, у однояйцевых близнецов болезни должны быть «общими», однако зачастую это не так: алкоголизм, болезнь Альцгеймера, биполярное расстройство, шизофрения, диабет, рак, болезнь Крона и ревматоидный артрит могут проявляться только у одного близнеца в зависимости от различных факторов. Причиной этого является эпигенетический дрифт – возрастное изменение экспрессии генов.

    Исследования в области эпигенетики показали, что только 5% генных мутаций, связанных с болезнями, являются полностью детерминированными; на остальные 95% можно повлиять посредством питания, поведения и прочих факторов внешней среды. Программа здорового образа жизни позволяет изменить активность от 4000 до 5000 различных генов.

    Мы не просто являемся суммой генов, с которыми были рождены. Именно человек является пользователем, именно он управляет своими генами. При этом не столь важно, какие «генетические карты» раздала Вам природа – важно, что Вы с ними будете делать.

    Эпигенетика находится на начальной стадии развития, многое еще предстоит узнать, однако существуют сведения о том, какие основные факторы образа жизни влияют на экспрессию генов.

    • Питание, сон и упражнения

    Не удивительно, что питание способно влиять на состояние ДНК. Рацион, насыщенный переработанными углеводами, приводит к «атакам» ДНК высокими уровнями глюкозы в крови. С другой стороны, обратить повреждения ДНК могут:

    • сульфорафан (содержится в брокколи);
    • куркумин (в составе куркумы);
    • эпигаллокатехин-3-галлат (есть в зеленом чае);
    • ресвератрол (содержится в винограде и вине).

    Что касается сна, всего неделя недосыпа негативно сказывается на активности более 700 генов. На экспрессии генов (117) положительно сказываются занятия спортом.

    • Стресс, отношения и даже мысли

    Эпигенетики утверждают, что не только такие «материальные» факторы, как диета, сон и спорт, влияют на гены. Как оказывается, стресс, отношения с людьми и Ваши мысли тоже являются весомыми факторами, влияющими на экспрессию генов. Так:

    • медитация подавляет экспрессию провоспалительных генов, помогая бороться с воспалениями, т.е. защититься от болезни Альцгеймера, рака, болезней сердца и диабета; при этом эффект такой практики виден уже через 8 часов занятий;
    • 400 научных исследований показали, что проявление благодарности, доброта, оптимизм и различные техники, которые задействуют разум и тело, положительно влияют на экспрессию генов;
    • отсутствие активности, плохое питание, постоянные негативные эмоции, токсины и вредные привычки, а также травмы и стрессы запускают негативные эпигенетичекие изменения.

    Длительность результатов эпигенетических изменений и будущее эпигенетики

    Одним из наиболее потрясающих и противоречивых открытий является то, что эпигенетические изменения передаются следующим поколениям без изменения последовательности генов. Доктор Митчелл Гейнор, автор книги «План генной терапии: Возьмите генетическую судьбу под контроль при помощи питания и образа жизни», считает, что экспрессия генов также передается по наследству.

    Эпигенетика, считает доктор Рэнди Джиртл, доказывает, что мы также несем ответственность за целостность нашего генома. Раньше мы считали, что от генов зависит все. Эпигенетика позволяет понять, что наше поведение и привычки могут повлиять на экспрессию генов у будущих поколений.

    Эпигенетика – сложная наука, которая имеет огромный потенциал. Специалистам предстоит проделать еще много работы, чтобы определить, какие именно факторы окружающей среды влияют на наши гены, как мы можем (и можем ли) обратить заболевания вспять или максимально эффективно их предотвратить.

    читать больше на Estet-portal.com

    Источник: https://zen.yandex.ru/media/id/5a95690d00b3dd72bc0df4ec/sekrety-epigenetiki-kak-faktory-obraza-jizni-vliiaiut-na-geny-5de794fb2beb4900ae3e6df6

    Стресс от бабушки, супермышцы и запасные органы. Что такое эпигенетика и как она работает

    Что такое экспрессивность гена

    Эпигенетика занимается тем, как наследуются приобретенные изменения. Нет, речь не о том, что если жираф будет систематически тренироваться объедать возможно более высокие ветки, то его дети вырастут еще выше.

    И не о том, что живые существа можно приучить к чему-то так, чтоб их потомство поменяло свой внешний вид или свои физиологические особенности.

    Эпигенетика — это наука о наследуемых изменениях в паттернах экспрессии генов, или, как писал еще в 1942 году сам автор термина Конрад Уоддингтон, «раздел биологии, изучающий те причинно-следственные связи между генами и их производными, которые приводят к формированию фенотипа».

    Ни определение почтенного британского биолога, одной из ключевых фигур в теоретической биологии, ни слова о паттернах экспрессии сами по себе нельзя назвать особенно простыми, поэтому мы начнем с другой стороны.

    Клетка как молекулярный наноробот

    XX век открыл человечеству совершенно новый мир, где клетки оказались не безликими строительными кирпичиками живой ткани, а сложнейшими объектами, по сути организмами в организме. Или, что будет вполне корректно, самовоспроизводящимися нанороботами, существование которых поддерживается за счет трех типов молекул: липидов, белков и нуклеиновых кислот.

    Нуклеиновые кислоты и белки собираются из стандартных блоков — нуклеотидов и аминокислот соответственно.

    При том, что земные организмы используют всего пять нуклеотидов, а аминокислот известно несколько сотен разновидностей, вариантов нуклеиновых кислот и белков может быть гораздо большее количество.

    Сама возможность жизни основывается на том, что комплект белков и ДНК может синтезировать копию самого себя, создавая второй комплект ДНК и второй набор белков.

    В ДНК записана информация, позволяющая синтезировать все остальные сложно организованные молекулы.

    При помощи специальных белков с ДНК можно снять слепок в виде молекулы РНК (это рибонуклеиновая кислота, в ней одна нить вместо двух и чуть иной набор нуклеотидов), а уже на основе РНК создать рибосомы — специальные сложноорганизованные молекулярные машины, которые затем собирают белок из отдельных аминокислот.

    Цепочка «ДНК — РНК — белок» вошла во все книги по биологии как центральная догма молекулярно-клеточной теории. Некоторое время считалось, что вся жизнь крутится вокруг генов, участков ДНК, связанных с синтезом отдельной молекулы белка или РНК.

    Считывание информации с ДНК. А. Лапушко / Chdrk.

    Но в этой схеме есть ряд изъянов, причем довольно очевидных. Например, у нейрона, клетки печени, сперматозоида или лимфоцита набор генов совершенно одинаковый, однако это совершенно разные клетки.

    Более того, нейрон мыши невозможно отличить от человеческого без довольно тонкого молекулярного анализа, а вот отличить клетку кожи от нейрона в пределах одного организма сможет даже неспециалист. Геном человека содержит множество генов, которые почти не отличаются от генов дрожжей, но разница между нами и дрожжами очевидна.

    Для наших клеток важно не только то, какие гены находятся в ДНК, но и то, сколько именно молекул собирается на их основе и какие именно гены сейчас активны.

    «И тысячу за знание»

    Есть анекдот про автослесаря, который устранил поломку одним ударом молотка, но при этом выставил счет на тысячу рублей: 10 за удар и 990 за знание, куда ударить.

    Организация жизни клетки напоминает этот анекдот: ряд исследований указывает, что ключевую роль в эволюции сложных организмов сыграли не те гены, которые кодируют какие-то конкретные белки (то есть «ударяют»), а те, которые связаны с тонкой регуляцией работы остального генома (знают, куда «ударить»).

    Под работой генов, или, как говорят биологи, экспрессией, подразумевается синтез белка или РНК, которые этот ген кодирует.

    В классической догме «ДНК — РНК — белок» гены нужны для того, чтобы удовлетворить потребность клетки в чем-то конкретном: новых частях внутриклеточного скелета, ферментах для расщепления захваченных питательных веществ или каких-то веществах для секреции вовне.

    Все перечисленное либо состоит из белков (кодируемых генами), либо требует специальных белков (снова кодируемых генами) для своей сборки.

    Клеточный «скелет» из микротрубочек, покрашенный флуоресцентным красителем. Клетка, кстати, злокачественная. Howard Vindin / CC BY-SA 4.0

    Однако детальное изучение молекулярно-биологических машин внутри клетки показало, что некоторые гены нужны еще и для того, чтобы регулировать работу своих соседей. А не просто для того, чтобы собрать белковую деталь для строительства клетки или даже белковую машину для производства чего-либо.

    Существуют белки, называемые факторами транскрипции. Они «садятся» на ДНК в строго заданном месте — начале конкретного гена — и позволяют начать синтезировать молекулы РНК с этого фрагмента. А там, где РНК, потом появляется и соответствующий белок.

    Это означает, что ген, кодирующий фактор транскрипции, позволяет клетке синтезировать белки, кодируемые иными генами. Всего в человеческом геноме около двадцати тысяч белков, из них две тысячи — это транскрипционные факторы.

    Получается, что каждый десятый ген, по сути, сам ничего в клетке не производит, а лишь следит за тем, чтобы в нужное время и в нужных обстоятельствах что-то производилось.

    Именно эти «менеджеры», точнее сеть взаимодействий между ними, на рубеже XX—XXI веков стали предметом пристального внимания биологов. Они пришли к выводу, что в эволюции, похоже, главную роль играет совершенствование управления генами, а не просто появление каких-то удачных белков. Примером — одним из многих — может быть ген FOXP2.

    После того как его человеческий вариант включили в геном мышей, грызуны стали лучше обучаться и даже пищать начали иначе. Этот ген кодирует белок, который представляет собой именно транскрипционный фактор: он отвечает не за то, что ые связки должны быть как-то по особому эластичны, и не за то, что нервные клетки приобретают какие-то особые рецепторы.

    FOXP2 — это лишь эффективный внутриклеточный управляющий, который знает, как использовать гены мыши.

    Источник: https://tass.ru/sci/6816171

    Все о медицине
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: