Чем образована т система мышечного волокна

Мышцы человека

Чем образована т система мышечного волокна

Но скелетная мускулатура — далеко не все мускулы человеческого тела. Благодаря работе гладкой мускулатуры внутренних органов, по кишечнику идет перистальтическая волна, совершается вдох, сокращается, обеспечивая жизнь, самая важная мышца человеческого тела — сердце.

Определение мышц

Мышца (лат. muskulus) — орган тела человека и животных, образованный мышечной тканью. Мышечная ткань имеет сложное строение: клетки-миоциты и покрывающая их оболочка — эндомизий образуют отдельные мышечные пучки, которые, соединяясь вместе, образуют непосредственно мышцу, одетую для защиты в плащ из соединительной ткани или фасцию.

Мышцы тела человека можно поделить на:

  • скелетные,
  • гладкие,
  • сердечную.

Как видно из названия, скелетный тип мускулатуры крепится к костям скелета. Второе название — поперечно-полосатая (за счет поперечной исчерченности), которая видна при микроскопии.

К этой группе относятся мышцы головы, конечностей и туловища. Движения их произвольные, т.е. человек может ими управлять.

Эта группа мышц человека обеспечивает передвижение в пространстве, именно их с помощью тренировок можно развить или «накачать».

Гладкая мускулатура входит в состав внутренних органов — кишечника, мочевого пузыря, стенки сосудов, сердца. Благодаря ее сокращению повышается артериальное давление при стрессе или передвигается пищевой комок по желудочно-кишечному тракту.

Сердечная — характерна только для сердца, обеспечивает непрерывную циркуляцию крови в организме.

Интересно узнать, что первое мышечное сокращение происходит уже на четвертой неделе жизни эмбриона – это первый удар сердца. С этого момента и до самой смерти человека сердце не останавливается ни на минуту. Единственная причина остановки сердца в течение жизни — операция на открытом сердце, но тогда за этот важный орган работает АИК (аппарат искусственного кровообращения).

Строение мышц человека

Единицей строения мышечной ткани является мышечное волокно. Даже отдельное мышечное волокно способно сокращаться, что свидетельствует о том, что мышечное волокно – это не только отдельная клетка, но и функционирующая физиологическая единица, способная выполнять определенное действие.

Отдельная мышечная клетка покрыта сарколеммой – прочной эластичной мембраной, которую обеспечивают белки коллаген и эластин. Эластичность сарколеммы позволяет мышечному волокну растягиваться, а некоторым людям проявлять чудеса гибкости – садиться на шпагат и выполнять другие трюки.

В сарколемме, как прутья в венике, плотно уложены нити миофибрилл, составленные из отдельных саркомеров. Толстые нити миозина и тонкие нити актина формируют многоядерную клетку, причем диаметр мышечного волокна – не строго фиксированная величина и может варьироваться в довольно большом диапазоне от 10 до 100 мкм.

Актин, входящий в состав миоцита, — составная часть структуры цитоскелета и обладает способностью сокращаться. В состав актина входит 375 аминокислотных остатка, что составляет около 15% миоцита. Остальные 65 % мышечного белка представлены миозином. Две полипептидные цепочки из 2000 аминокислот формируют молекулу миозина.

При взаимодействии актина и миозина формируется белковый комплекс — актомиозин.

Описание мышц человека сложно, и для наглядного представления можно обратиться к учебнику «Биология 8 класс» под редакцией В.И.Сивоглазова, где на странице 117 на иллюстрации показано, каким образом выглядит миоцит под микроскопом.

Название мышц человека

Когда анатомы в Средние века начали темными ночами выкапывать трупы, чтобы изучить строение человеческого тела, встал вопрос о названиях мускулов. Ведь нужно было объяснить зевакам, которые собрались в анатомическом театре, что же ученый в данный момент кромсает остро заточенным ножом.

Ученые решили их называть либо по костям, к которым они крепятся (например, грудинно-ключично-сосцевидная мышца), либо по внешнему виду (например, широчайшая мышца спины или трапециевидная), либо по функции, которую они выполняют (длинный разгибатель пальцев). Некоторые мышцы имеют исторические названия. Например, портняжная названа так потому, что приводила в движение педаль швейной машины. Кстати, эта мышца — самая длинная в человеческом теле.

Классификация мышц

Единой классификации не существует, и мускулы классифицируются по различным признакам.

По расположению:

  • головы;в свою очередь делятся на:
    • – мимические
    • – жевательные
  • шеи
  • туловища
  • живота
  • конечностей

По направлению волокон:

  • прямые
  • поперечные
  • круговые
  • косые
  • одноперистые
  • двуперистые
  • многоперистые
  • полусухожильные
  • полуперепончатые

Мускулы крепятся к костям, перекидываясь через суставы, чтобы осуществлять движение. 
В зависимости от количества суставов, через которое перекидывается мускул:

  • односуставные
  • двусуставные
  • многосуставные

По типу выполняемого движения:

  • сгибание- разгибание
  • отведение, приведение
  • супинация, пронация (супинация – вращение кнаружи, пронация – вращение кнутри)
  • сжатие, расслабление
  • поднятие, опускание
  • выпрямление

Для обеспечения движений тела и перемещения с места на место, мускулы работают слаженно и группами. Причем по своей работе делятся на:

  • агонисты – берут на себя основную нагрузку при выполнении определенного действи (например, бицепс при сгибании руки в локте)
  • антагонисты – работают в разных направления (трехглавая мышца, участвующая в разгибании конечности в локтевом суставе, будет антагонистом трицепсу); агонисты и антагонисты в зависимости от того действия, что мы хотим совершить, могут меняться местами
  • синергисты – помощники при выполнении действия, либо стабилизаторы

Функции мышц человека

Кости скелета и скелетная мускулатура, объединившись, составляют опорно-двигательный аппарат.

Гладкая мускулатура входит в состав стенок различных полых органов — мочевого пузыря, стенок сосудов и сердца, которое сокращается под влиянием вегетативной нервной системы, т.е. не зависит от желания и воли человека.

 Хотя рассказывают, что некоторые йоги могут силой мысли замедлить частоту сердечных сокращений практически до нуля. Но это йоги, а обычный человек работой гладкой мускулатуры управлять ни силой воли, ни силой мысли не может.

Однако может косвенно влиять с помощью гормонов.

Наверняка, вы все замечали, что при интенсивной и длительной пробежке сердце начинает биться быстрее. А у некоторых, даже хорошо подготовленных учеников, перед сложным экзаменом начинается медвежья болезнь и они то и дело бегают в туалет. Все это обусловлено гормональными всплесками, которые влияют на работу организма.

К основным функциям скелетной мускулатуры относят:

  • двигательную
  • опорную или статическую — поддержание положения тела в пространстве

Иногда эти две функции объединяют в одну стато-кинетическую функцию.

Также мышечная система участвует в дыхании, пищеварении, мочеиспускании и термогенезе.
Более подробно о функции каждой группы скелетной мускулатуры написано в учебнике «Биология 8 класс» под редакцией В.И.Сивоглазова.

#ADVERTISING_INSERT#

Источник: https://rosuchebnik.ru/material/myshtsy-cheloveka/

Мышечное волокно

Чем образована т система мышечного волокна

Мышечное волокно (миоцит) — основная структурная и функциональная единица соматической мышечной ткани; третья стадия и результат гистогенеза.

Длина мышечного волокна часто совпадает с длиной мышцы, в состав которого оно входит.

Структура

Волокно покрыто сарколеммой (от греч. Σαρξ (σαρκός) — мясо, плоть и греч. Λέμμα — кожура), которая состоит из двух мембран. Внешняя базальная мембрана стыкуется с ретикулярными и тонкими коллагеновыми волокнами соединительной ткани, что его окружает. Внутренняя мембрана аналогичная плазмолемме всех тканевых клеток и участвует в проведении импульсов сокращения волокна.

Плазмолемма образует систему узких канальцев, пронизывающих все волокно и сливаются с сарколеммой противоположной стороны. Таким образом, вся саркоплазма пронизана системой поперечных трубок, Т-системой. Цитоплазма имеет специальное название — саркоплазма, структурными компонентами которой являются миофибриллы (сократительный аппарат волокна), органеллы, включения, гиалоплазма.

Многочисленные ядра мышечного волокна размещаются на периферии под саркоплазме. В гиалоплазме волокна локализуются хорошо развиты митохондрии (саркосомы), которые скапливаются между микрофибрилами, вокруг многочисленных ядер, непосредственно, под сарколеммой.

Это те зоны волокна, которые требуют значительного количества АТФ, поэтому становится понятным высокая метаболическая активность скелетных мышц. Интенсивного развития достигает агранулярная эндоплазматическая сеть (саркоплазматическая ретикулум).

Ее мембранные элементы размещаются вдоль саркомеров (частицы, из которых состоит волокно и зависит его длина). Саркоплазматического ретикулума присуща специфическая функция накопления ионов кальция, необходимых при сокращении и расслаблении мышечного волокна.

Другие органоиды (гранулярный эндоплазматический ретикулум, комплекс Гольджи и другие) развиты слабее и локализуются у ядер, на периферии под сарколеммой. Ядра могут размещаться в виде цепочки друг за другом, что есть в результате амитотичного деления — показатель реактивного состояния мышечного волокна.

Количество ядер колеблется от десятка до нескольких сотен, они имеют овальную форму. Гетерохроматин в виде крупных гранул находится в сравнительно светлой нуклеоплазме.

Между миофибрилл локализуется значительное количество гранул гликогена (трофической) включение — материала для синтеза АТФ.

В цитоплазме мышечного волокна содержатся дыхательные ферменты, белок, миоглобин — аналог гемоглобина эритроцитов, который также способен связывать и отдавать кислород. Миоглобин окрашивает мышечные волокна в красный цвет.

В зависимости от содержания саркоплазмы (а, следовательно, и миоглобина), толщины и ферментного состава мышечные волокна делятся на красные и белые.

Красные волокна в саркоплазме содержат большое количество миоглобина, многочисленные митохондрии, богатые цитохромы, миофибриллы в них имеют незначительную толщину. Мышцы, в которых преобладают красные волокна, способные к длительной непрерывной активности, поскольку их саркоплазма хорошо обеспечивает энергетические потребности. Белые волокна содержат в саркоплазме меньше миоглобина и митохондрий, в них большая толщина миофибрилл. Белые мышечные волокна способны сокращаться быстрее, чем красные, но они сравнительно быстро устают, так как не обеспечивают структуры саркоплазмы дос-татньою количеством энергии.

Миофибриллы

Наибольший удельный вес в саркоплазме составляют миофибриллы. Они размещаются вдоль мышечного волокна и их длина совпадает с длиной волокна, диаметр миофибрилл — 1-2 мкм.

Они имеют характерную поперечную полосатость (чередование светлых и темных полос, дисков), что обусловлено особенностью их структуры и, в связи с этим, различными оптическими свойствами.

Все темные и все светлые диски миофибрилл в одном волокне находятся на одном уровне, из-за чего волокно имеет поперечную исчерченность. Продольная ориентация миофибрилл предоставляет мышечному волокну продольную полосатость.

В поляризованном свете темные полосы (диски) имеют двойное лучепреломление — анизотропию, из-за чего их называют анизотропными — А-дисками. Светлые диски являются однопроменезаломнимы, из-за чего их называют изотропными — И-дисками.

Внутри каждого I-диска проходит темная зона — линия Z (телофрагма).

В центре А-диска наблюдается светлая зона — линия Н(полоска Гензена), посередине которой находится тонкая, темная линия М(мезофрагма).

Миофибриллы можно получить, расщепив мышечное волокно.

Саркомер

Структурной единицей миофибрилл является саркомер. Это участок миофибриллы между двумя телофрагма. В Миофибриллы саркомер размещаются друг за другом и в зоне Т-телофрагма, богатой гликозаминогликаны, миофибриллы могут при мацерации распадаться на отдельные саркомер.

Саркомер — это часть миофибриллы, состоящий из Т-телофрагма — линии Z (для двух соседних саркомеров), половин I-и А-диска половины зоны Н, М-мезофрагма — половины зоны Н, половин А- и I-дисков, линии Z- телофрагма.

Механизм сокращения

Саркомер — это элементарные сократительные единицы поперечно-полосатых мышц, которые сокращаются благодаря способности уменьшать свою длину в два раза. Электронно, гистохимическими, биохимическими исследованиями удалось установить функциональную морфологию саркомера.

Были идентифицированы продольные нити саркомера-миофиламенты или микрофиламенты двух типов. А диск состоит из толстых миофиламентов (диаметр — 10- 12 нм, длина — 1,5-2 мкм), и диск — с тонких (диаметр — 5-7 нм, длина — 1-1,3 мкм) миофиламентов.

Материалом, из которого состоят толстые миофиламенты, является белок миозин, а тонкие — актин, тропомиозин-В и тропин. Количественное отношение миозинових и актиновых миофиламентов в одной Миофибриллы 1: 2, то есть на один миозиновои миофиламенты приходится два актиновых.

Актиновые и миозиновые миофиламенты контактируют друг с другом не конец в конец, а перемещаются (скользят) по отношению друг к другу и в А-диске образуют зону перекрытия. Часть А-диска, которая состоит только из миозинових миофиламентов, называют Н-линией и по сравнению с зоной перекрытия, они светлее.

При сокращении саркомера актиновые миофиламенты еще дальше проникают в промежутки между миозиновои, а при полном сокращении их свободные концы почти совпадают в середине саркомера.

Поскольку длина таких филаментов остается неизменной, они, просачиваясь между толстыми филаментами, влекут телофрагма, к которым прикреплены, тем самым сближая конце всех саркомеров. В полностью сокращенном саркомере Н-зона, а также I-диски почти исчезают и все саркомер превращается в зону перекрытия.

М-линия (мезофрагма) — это место соединения толстых миозиновых миофиламентов в анизотропной А-диске Z-линия (телофрагма) проходит через всю толщину саркомера, а зона прикрепления тонких актиновых миофиламентов имеет зигзагообразный контур.

Z-линия состоит из Z-филаментов, в состав которых входят белки — тропомиозин-В и L-актин, Z-филаменты формируют решетку, к которой с обеих сторон прикрепляются тонкие актиновые миофиламенты И дисков двух соседних саркомеров. Таким образом, телофрагма (Z-линии) и мезофрагма (М-линии) является опорным аппаратом саркомеров.

Таким образом, при сокращении мышечного волокна его сократительный аппарат испытывает таких изменений: уменьшается длина саркомера, поскольку актиновые миофиламенты И-диска продвигаются (скользят) между миозиновои А-диске, сдвигаясь к Н-линии (мезофрагма) А-диске; увеличиваются зоны перекрытия, формируя боковые соединения (мостики) между актиновыми и миозиновои миофиламенты; сокращается Н-линия (мезофрагма) сближаются Z-линии (телофрагма). Чем сильнее сокращается миофибрилл, тем глубже актиновые миофиламенты заходят в промежутки между миозиновои, зоны перекрытия расширяются за счет сужения Н-линий.

Для понимания механизма сокращения миофибриллы необходимо упомянуть о наличии специализированного саркоплазматического ретикулума саркоплазмы волокна и образования плазмолеммой системы поперечных канальцев Т-трубочек. Зоны контакта системы Т-трубочек и терминальных цистерн саркоплазматического ретикулума называют триадами.

Т-трубки проходят на уровне Z-линий (телофрагма) через все волокно и контактируют с цистернами саркоплазматической сетки с противоположной стороны. Таким образом, Т-трубочки локализуются на границе двух саркомеров и контактируют с терминалями саркоплазматической сети обоих саркомеров, образуя триады.

Эти структуры играют основную роль в деполяризации (распространении импульса) и аккумуляции ионов кальция.

Плазмолемма мышечного волокна, как и неврилема нервных волокон, электрически поляризована. Внутренняя поверхность плазмолеми, расслабленного мышечного волокна, имеет отрицательный потенциал, а внешняя-положительный.

При сокращении мышечных волокон волна деполяризации по нервному волокну через нервное окончание достигает плазмолеми мышечного волокна и вызывает ее местную деполяризацию.

Через систему Т-трубочек, которая связана с плазмолеммой и триадой, волна деполяризации влияет на проницаемость мембран саркоплазматического ретикулума, что приводит к освобождению аккумулированных ионов кальция с ее поверхности в саркоплазму.

В присутствии ионов кальция активизируется расщепление АТФ, что необходимо для образования актомиозинового комплекса и скольжения актиновых миофиламентов по отношению к миозинових. Это вызывает сокращение каждого саркомера, а отсюда миофибрилл и мышечных волокон в целом.

Важное место в этом процессе принадлежит молекулам миофиламентов-миозина. Они состоят из головки и длинного хвостика. При гидролизе АТФ, чему способствует АТФ-на активность головок молекул миозина, они образуют связи (мостики) с определенными молекул миофиламентов-актина.

Актиновые миофиламенты сближаются к центру саркомера, Z-линии (телофрагма) сближаются, увеличиваются зоны перекрытия, уменьшаются Н-зоны (мезофрагма) анизотропных дисков миофибрилл.

Затем с участием АТФ актомиозин связи разрушаются, а миозиновые головки присоединяются к соседним участкам актиновых миофиламентов, что способствует дальнейшему продвижению миофиламентов друг к другу.

При уменьшении концентрации ионов кальция (они трансформируются в мембраны саркоплазматического ретикулума) сокращение мышечного волокна прекращается. Для этого также необходима энергия АТФ. Следовательно, при расслаблении так же, как при сокращении мышечного волокна расходуется АТФ, источником которой в саркоплазме является гликоген, глюкоза и жирные кислоты.

Фиксация

Концы мышечных волокон прочно фиксируются в сухожилий или сухожильных прослоек, размещаемых между ними. Сарколеммой образует пальцеобразные вырасти, между которыми находятся коллагеновые волокна соединительной ткани, которые крепят мышечные волокна до костей. Эта связь настолько прочен, что при нагрузке, которое способно разорвать мышцы или сухожилия, структура остается целой.

Тонкие слои рыхлой соединительной ткани между мышечными волокнами называют эндомизий, ретикулярные и коллагеновые волокна его переплетаются с волокнами сарколеммы (внешний соединительно-тканевый слой). В эндомизием локализуются гемокапилляры и структуры нервной ткани.

Комплекс волокна с окильний элементами является структурной и функциональной единицей скелетной мышцы. Мышечные волокна объединяются в пучки, между которыми есть толстые слои рыхлой соединительной ткани, которая носит название перимизий.

Соединительную ткань, покрывающая мышцу в целом, как орган, называют епимизий.

Воспроизведение

Мышечные волокна способны к активному регенерации. Репаративная регенерация происходит на фоне отмирания старых структур и создание новых. Как и при нормальном гистогенезе, регенерация происходит в три фазы: миобластичну; мышечных трубочек формирование мышечного волокна.

Источник: https://info-farm.ru/alphabet_index/m/myshechnoe-volokno.html

Из чего состоят мышечные волокна?

Чем образована т система мышечного волокна

Описан состав мышечных волокон, а также функции основных компонентов мышечного волокна: миофибрилл, ядер, эндоплазматической сети, рибосом, комплекса Гольджи, лизосом и митохондрий. Показано отличие мышечного волокна от клетки.

Знание основных компонентов  мышечного волокна необходимо для понимания механизмов гипертрофии мышцы (увеличения ее объема), а также ее силы.

Мышечное волокно покрыто оболочкой, которая называется сарколеммой. В оболочке мышечного волокна располагаются особые клетки – клетки-сателлиты. Эти клетки способны делиться. Их деление во многом определяет гипертрофию мышечных волокон.

Весь внутренний объем мышечного волокна заполнен желеобразным содержимым – саркоплазмой. В саркоплазме имеются следующие компоненты:

  • органеллы специального назначения (органеллы, которые отличают мышечное волокно от других клеток);
  • органеллы общего назначения (органеллы, которые присутствуют во всех клетках человека);
  • включения.

Органеллы специального назначения

Органеллами специального назначения являются миофибриллы. Миофибриллы это – длинные тонкие белковые нити, идущие от одного конца мышечного волокна до другого. Количество миофибрилл в мышечном волокне составляет от нескольких сотен до нескольких тысяч. Их главная функция – сократительная.

Органеллы общего назначения

Более подробно строение и функции мышечных волокон описаны в моих книгах «Гипертрофия скелетных мышц человека» и «Биомеханика мышц«

К органеллам общего назначения относятся:

  • ядра — органеллы овальной формы, расположенные под сарколеммой (оболочкой мышечного волокна). В ядрах мышечных волокон содержатся молекулы ДНК (дезоксирибонуклеиновой кислоты). ДНК содержит всю генетическую информацию об организме человека. В мышечных волокнах может содержаться до 10000 ядер.
  • эндоплазматическая сеть. Шероховатая эндоплазматическая сеть окружает ядра, на ее поверхности располагаются рибосомы. Гладкая эндоплазматическая сеть (саркоплазматический ретикулум — СР) окружает миофибриллы. СР содержит ионы кальция, необходимые для сокращения миофибрилл.
  • рибосомы — органеллы, на которых синтезируется белок;
  • комплекс Гольджи — мембранная органелла, имеющая вид плоских цистерн, на периферии которых имеются многочисленные мелкие пузырьки. В комплексе Гольджи происходит окончательное формирование структур белков. Затем они сортируются, упаковываются в мембранные пузырьки и транспортируются в другие места, где они необходимы;
  • лизосомы — мембранные органеллы, которые формируются в комплексе Гольджи. Лизосомы содержат большой набор ферментов (до 80). Эти ферменты расщепляют белки, а также поврежденные компоненты мышечных волокон;
  • митохондрии — мембранные органеллы, в которых происходит окисление белков, жиров и углеводов до углекислого газа и воды. В результате этих процессов  синтезируется АТФ.

Включения

Включениями в мышечном волокне являются: различные белки, аминокислоты; АТФ,  креатинфосфат, гликоген, миоглобин, жир, вода и др.

Отличие мышечного волокна от обычной клетки

Несмотря на то, что мышечные волокна часто называют мышечными клетками (миоцитами) из которых состоит мышечная ткань, это не совсем правильно по следующим соображениям:

В дальнейшем я более подробно остановлюсь на некоторых элементах мышечного волокна, а также на его строении.

С уважением, А.В. Самсонова

Дано определение, описаны основы метода и история открытия  магнитно-резонансной томографии (МРТ). Приведены примеры применения МРТ в области медицины,… Дано определение электромиографии (ЭМГ), описана история развития электромиографии, параметры электромиограммы: длительность электрической активности мышц, частота и амплитуда… Описана история выделения типов телосложения (соматотипов) психологом Уильямом Гербертом Шелдоном. Дана характеристика трем соматотипам по У. Дается определение телосложения и соматотипа. Приводятся критерии классификации, основанные на оценке пропорций человеческого тела (Шевкуненко-Геселевича и Бунака) и… Изучалось влияние KAATSU-тренинга на силовую выносливость мышц нижних конечностей квалифицированных футболистов. Установлены достоверные изменения в локальной силовой… Показано, что прием антиоксидантов во время тренировок не всегда приносит пользу. Иногда это вредно. Исследования на животных и…

Источник: https://allasamsonova.ru/iz-chego-sostojat-myshechnye-volokna/

Синапс. Физиология мышечных волокон

Чем образована т система мышечного волокна
Оглавление по разделу: «Лекции по нормальной физиологии»

При создании данной страницы использовалась лекция по соответствующей теме, составленная Кафедрой Нормальной физиологии БашГМУ

Синапс — это специфическое место контакта двух возбудимых систем (клеток) для передачи возбуждения.

«synapsis» — «соприкосновение, соединение, застежка»

По способу передачи сигналов:

  • механические,
  • химические,
  • электрические.

По виду медиатора: холинэргические и др.

Нервно-мышечный синапс (НМС) — химический, передача с помощью медиатора ацетилхолина.

Синонимы к слову НМС:

  • Нервно-мышечное соединение;
  • Моторная концевая пластинка.

Аксоны нервных клеток на своих окончаниях теряют миелиновую оболочку, ветвятся, и концевые веточки аксона утолщаются. Это пресинаптическая терминаль или бляшка или пуговка, которая погружается в углубление на поверхности мышечного волокна.

Покрывающая концевую веточку аксона поверхностная мембрана называется пресинаптической мембраной, т.е. это мембрана, покрывающая поверхность синаптической бляшки (терминали аксона).

Мембрана, покрывающая мышечное волокно в области синапса, называется постсинаптической мембраной, или концевой пластинкой. Она имеет извитую структуру, образуя многочисленные складки, уходящие вглубь мышечного волокна, за счет чего увеличивается площадь контакта.

На постсинаптической мембране находятся белковые структуры — рецепторы, способные связывать медиатор. В одном синапсе количество рецепторов достигает 10-20 млн.

Между пре- и постсинаптическими мембранами находится синаптическая щель, размеры ее в среднем 50 нм, она открывается в межклеточное пространство и заполнена межклеточной жидкостью.

В синаптической щели находится мукополисахаридное плотное вещество в виде полосок, мостиков и содержится фермент ацетилхолинэстераза.

В пресинаптической терминали находится большое количество пузырьков или везикул, заполненных медиатором — химическим веществом посредником, осуществляющим передачу возбуждения.

В нервно-мышечном синапсе медиатор — ацетилхолин (АХ).

АХ синтезируется из холина и уксусной кислоты (ацетил-коэнзима А) с помощью фермента холинэстеразы. Эти вещества перемещаются из тела нейрона по аксону к пресинаптической мембране. Здесь в пузырьках происходит окончательное образование АХ.

3 фракции медиатора:

  1. Первая фракция — доступная — располагается рядом с пресинаптической мембраной.
  2. Вторая фракция — депонированная — располагается над первой фракцией.
  3. Третья фракция — диффузно рассеянная — наиболее удаленная от пресинаптической мембраны.

Минуточку внимания! На сайте работает «Ночная тема». Нажмите на в меню сайта, чтобы перейти на темную цветовую схему.

4 этап

Ионы Ca вызывают образование специального белкового комплекса, который включает в себя везикулу и структуры, расположенные непосредственно около пресинаптической мембраны.

Они связаны между собой так называемыми белками экзоцитоза.

Часть белков расположена на везикулах (синапсин, синаптотагмин, синаптобревин), а часть — на пресинаптической мембране (синтаксин, синапсо-ассоциированный белок). Данный комплекс получил название секретосома.

6 этап

Излитию содержимого пузырька в щель способствует белок синаптопорин, формирующий канал, по которому идет выброс медиатора.

Квант медиатора — количество молекул, содержащихся в одной везикуле.

На 1 ПД выбрасывается 100 квантов АХ.

10 этап

На постсинаптической мембране возникает потенциал концевой пластинки (ПКП). Он является аналогом локального ответа (ЛО).

Потенциал действия на постсинаптической мембране не возникает! Он формируется на соседней мембране мышечного волокна.

Судьба медиатора:

  • связывание с рецептором,
  • разрушение ферментов (ацетилхолинэстеразой),
  • обратное поглощение в пресинаптическую мембрану,
  • вымывание из щели и фагоцитоз.

События в синапсе:

  1. ПД приходит к терминали аксона;
  2. Он деполяризует пресинаптическую мембрану;
  3. Ca2+ входит в терминаль, что приводит к выделению АХ;
  4. В синаптическую щель выделяется медиатор АХ;
  5. Он диффундирует в щель и связывается с рецепторами постсинаптической мембраны;
  6. Меняется проницаемость постсинаптической мембраны для ионов Na+;
  7. Ионы Na+ проникают в постсинаптическую мембрану и уменьшают ее заряд — возникает потенциал концевой пластинки (ПКП).

На самой постсинаптической мембране ПД возникнуть не может, так как здесь отсутствуют потенциалзависимые каналы, они являются хемозависимыми!

  1. ПКП суммируются и достигают КУД на соседнем участке мышечного волокна, что приводит к возникновению ПД и его распространению по мышечному волокну (около 5 м/с).

Достигнув пороговой величины, то есть КУД, ПКП возбуждает соседнюю (внесинаптическую) мембрану мышечного волокна за счет местных круговых токов.

Особенности проведения возбуждения в нервно-мышечном синапсе

Одностороннее проведение возбуждения — только в направлении от пресинаптического окончания к постсинаптической мембране.

Суммация возбуждения соседних постсинаптических мембран.

Синаптическая задержка — замедление в проведении импульса от нейрона к мышце составляет 0,5-1 мс. Это время затрачивается на секрецию медиатора, его диффузию к постсинаптической мембране, взаимодействие с рецептором, формирование ПКП, их суммацию.

Низкая лабильность — она составляет 100-150 имп/с для сигнала, что в 5-6 раз ниже лабильности нервного волокна.

Чувствительность к действию лекарственных веществ, ядов, БАВ, выполняющих роль медиатора.

Утомляемость химических синапсов — выражается в ухудшении проводимости вплоть до блокады в синапсе при длительном функционировании синапса. причина утомляемости — исчерпание запасов медиатора в пресинаптическом окончании.

Законы проведения возбуждения по нервам:

  1. Закон функциональной целостности нерва.
  2. Закон изолированного проведения возбуждения.
  3. Закон двустороннего проведения возбуждения.

В зависимости от скорости проведения возбуждения нервные волокна подразделяются на 3 группы: A, B, C. В группе A выделяют 4 подгруппы: альфа, бетта, гамма и сигма.

Физиология мышечных волокон

Три типа мышц:

  • скелетная (40-50% массы тела),
  • сердечная (менее 1%),
  • гладкая (8-9%).

Физиологические свойства скелетных мышц:

  1. Возбудимость — способность отвечать на действие раздражителя возбуждением.
  2. Проводимость — способность проводить возбуждение из места его возникновения к другим участкам мышцы.
  3. Лабильность — способность мышцы сокращаться в соответствии с частотой действия раздражителя (200-300 Гц для скелетной мышцы).
  4. Сократимость — для мышцы является специфическим свойством — это способность мышцы изменять длину или напряжение в ответ на действие раздражителя.

Физические свойства скелетных мышц:

  1. Растяжимость — способность мышцы изменять длину под действием растягивающей силы.
  2. Эластичность — способность мышцы восстанавливать первоначальную длину или форму после прекращения действия растягивающей силы.
  3. Силы мышц — способность мышцы поднять максимальный груз.
  4. Способность мышцы совершать работу.

Режимы сокращения:

  • Изотонический,
  • Изометрический,
  • Ауксотонический.

Изотонический режим — сокращение мышцы происходит с изменением ее длины без изменения напряжения (тонуса) (напр.: сокращение мышц языка).

Изометрический режим — длина постоянная, увеличивается степень мышечного напряжения (тонуса) (напр.: при поднятии непосильного груза).

Ауксотонический режим — одновременно изменяется длина и напряжение мышцы (характерен для обычных двигательных актов).

Механизм сокращения поперечно-полосатых мышц

Любая скелетная мышца состоит из мышечных волокон, которые, в свою очередь, состоят из множества тонких нитей — миофибрилл, расположенных продольно. Каждая миофибрилла состоит из протофибрилл — нитей сократительных белков: миозина (миозиновая протофибрилла), актина (актиновая протофибрилла).

Кроме сократительных белков в миофибрилле имеются два регуляторных белка: тропомиозин и тропонин.

Миозиновые волокна соединены в толстый пучок, от которого в торону актиновых нитей отходят поперечные мостики. У каждого мостика выделяют шейку и головку.

Нить актина располагается в виде 2 скрученных ниток бус. На ней имеются актиновые центры.

Тропомиозин в виде спиралей оплетает поверхность актина, закрывая в покое ее центры. Одна молекула тропомиозина контактирует с 7 молекулами актина.

Тропонин образует утолщение на конце каждой нити тропомиозина.

Под влиянием возникшего в мышечном волокне ПД из саркоплазматического ретикулума (СПР — депо Ca2+) высвобождаются ионы Ca. Кальций связывается с тропонином, который смещает тропомиозиновый стержень, что приводит к открытию актиновых центров.

В результате, к актиновым центрам присоединяются головки поперечных миозиновых мостиков.

Эти постики совершают «гребущие движения», в результате чего нити актина перемещаются этими мостиками относительно волокон миозина, происходит укорочение мышцы.

Процесс расслабления происходит в обратной последовательности с использованием энергии АТФ за счет функционирования кальциевого насоса.

При отсутствии повторного импульса ионы Ca не поступают из СПР. В результате отсутствия Ca-тропонинового комплекса, тропомиозин возвращается на свое прежнее место, блокируя актиновые центры актина. Актиновые протофибриллы легко скользят в обратном направлении благодаря эластичности мышцы, и мышца удлиняется (расслабляется).

Гладкие мышцы

Гладкие мышцы — это мышцы, формирующие слой стенок полых внутренних органов. Они построены из веретенообразных одноядерных мышечных клеток без поперечной исчерченности за счет хаотичного расположения миофибрилл.

Особенности гладких мышц:

  • Иннервируются волокнами вегетативной нервной системы (ВНС);
  • Обладают низкой возбудимостью:
  • Обладают низкой величиной МП (мембранного потенциала) — -50 — -60 мВ из-за более высокой проницаемости для ионов Na+
  • ПД (потенциал действия) отличается меньшей амплитудой и большей длительностью. Он формируется в основном за счет ионов Ca2+
  • Медленная проводимость:

Клетки в гладких мышцах функционально связаны между собой посредством щелевидных контактов — нексусов, которые имеют низкое электрическое сопротивление. За счет этих контактов ПД распространяется с одного мышечного волокна на другое, охватывая большие мышечные пласты, и в реакцию вовлекается вся мышца.

Гладкие мышцы способны осуществлять относительно медленные ритмические и длительные тонические сокращения.

Медленные ритмические сокращения обеспечивают перемещение содержимого органа из одной области в другую.

Длительные тонические сокращения, особенно сфинктеров полых органов, препятствуют выходу из них содержимого.

Это способность сохранять приданную им при растяжении или деформации форму. Благодаря пластичности гладкая мышца может быть полностью расслаблена как в укороченном, так и в растянутом состоянии.

Особенность гладких мышц, отличающая их от скелетных. Благодаря автоматии гладкие мышцы могут сокращаться в условиях отсутствия иннервации. Важную роль в этом играет растяжение.

Растяжение является адекватным раздражителем для гладкой мускулатуры. Сильное и резкое растяжение гладких мышц вызывает их сокращение.

Сравнительная характеристика скелетных и гладких мышц:

Разделы с похожими страницами

Источник: https://medfsh.ru/teoriya/teoriya-po-normalnoy-fiziologii/lektsii-po-normalnoj-fiziologii/sinaps-fiziologiya-myshechnyh-volokon

Типы мышечных волокон

Чем образована т система мышечного волокна

Мышца содержит различные типы мышечных волокон, которые отличаются по своим функциям.

Мышечные волокна разделяют на два типа:

  1. Красные (медленные волокна, или волокна типа I). Красные мышечные волокна густо усеяны капиллярами. Для ресинтеза АТФ используется преимущественно кислородный механизм. Поэтому красные волокна обладают высокой аэробной и ограниченной анаэробной способностью. Красные волокна работают относительно медленно, но не так быстро устают. Они способны поддерживать работу длительное время. Это важно для выносливости.
  2. Белые (быстрые волокна, или волокна типа II). В белых мышечных волокнах содержание капилляров умеренное. Ресинтез АТФ идет преимущественно анаэробно за счет фасфатного и лактатного механизма. Поэтому белые волокна обладают высокой анаэробной способностью и относительно низкой аэробной. Они быстро работают и быстро устают. Белые волокна могут производить энергичные взрывные упражнения в течение короткого периода времени. Это важно в скоростно-силовых видах спорта — спринтерский бег, метание, прыжки, борьба, тяжелая атлетика. Белые волокна делятся на тип IIа и IIb. Волокна IIb чисто анаэробные. Волокна IIа обладают высокой анаэробной и аэробной способностью ресинтеза АТФ. Волокна IIа поддерживают волокна типа I во время длительной работы на выносливость.

Каждый тип мышечных волокон тренируется определенным образом. Чем больше быстросокращающихся волокон в мышцах спортсмена, тем выше его спринтерские возможности. Соотношение медленносокращающихся и быстросокращающихся волокон может сильно различаться между людьми, но соотношение мышечных волокон у отдельного человека неизменно. Изначально мы рождаемся либо спринтерами, либо стайерами.

Не существует разницы в соотношении быстросокращающихся и медленносокращающихся волокон у мужчин и женщин. Реакция на тренировку мышечных волокон у женщин и мужчин одинакова.

Под действием тренировок белые волокна могут превратиться в красные. Спринтер может превратиться в хорошего стайера, хотя вместе с повышением выносливости у него снизятся спринтерские качества.

Спортсмен на выносливость не сможет изменить состав своих мышц, выполняя нагрузки скоростно-силового характера. С возрастом спринтерские способности спортсмена снижаются быстрее, чем способности к выполнению длительной работы.

Способности к выполнению длительной работы могут поддерживаться вплоть до преклонного возраста.

Устройство мышечного волокна

Мышечное волокно является структурной единицей мышечной ткани, которое состоит из:

  • миофибрилл (сократительных элементов);
  • митохондрий (энергопродукция);
  • ядер (регуляция);
  • сарколемы (соединительно-тканной оболочки);
  • саркоплазматический или эндоплазматический ретикулум (депо кальция, необходимого для возбуждения миофибриллы);
  • капилляры (поставка питательных веществ и кислорода).

Типы волокон

У людей все волокна скелетных мышц имеют разные механические и метаболические свойства. Различные типы мышечных волокон определяют по максимальной скорости их сокращения (быстрой и медленной) и главного метаболического пути, который они используют для образования АТФ (окислительный и гликолитический). Мышечные волокна в целом делятся на:

  1. I тип: медленные окислительные (МО) – медленные, тонкие, слабые, неутомляемые мышечные волокна. Низкий порог активации мотонейрона. Волокна I типа хорошо кровоснабжаются и имеют большее количество миоглобина, что придает им характерный красный цвет (красные волокна). Они также отличаются наличием многочисленных крупных митохондрий, содержащих ферменты окислительного фосфорилирования. Хотя в медленных волокнах больше миозина, чем в быстрых мышечных волокнах, они содержат меньше фермента АТФазы и медленнее сокращаются. Иннервация обеспечивается малыми альфа-мотонейронами спинного мозга. Благодаря низкой скорости сокращения они больше приспособлены к длительным нагрузкам, что, например, очень важно для поддержания позы.
  2. II тип: быстрые гликолитические волокна – толще, чем мышечные волокна I типа, отличаются быстрыми сокращениями, развивают большую силу и быстрее утомляются. Эти волокна хуже кровоснабжаются и имеют меньше митохондрий, липидов и миоглобина. В литературе они описываются как белые волокна. В отличие от медленных волокон, быстрые волокна содержат в основном ферменты анаэробного окисления и больше миофибрилл. Эти миофибриллы отличаются меньшим содержанием миозина, который, однако, сокращается быстрее и лучше метаболизирует аденозинтрифосфат (АТФ). Кроме того, в этих волокнах лучше выражен саркоплазматический ретикулум. Благодаря высокой скорости сокращения и быстрой утомляемости эти волокна способны на кратковременную работу. Иннервация осуществляется большими альфа-мотонейронами спинного мозга. Эти волокна делятся на:
  • IIа тип: быстрые окислительно-гликолитические (БОГ) или просто быстрые окислительные – промежуточные волокна, средней толщины. Более выносливы, чем волокна IIb типа, но утомляются быстрее, чем волокна I типа. Способны к выраженному сокращению, при этом развивают среднюю силу. Источниками энергии являются как окислительные, так анаэробные механизмы (быстрые окислительные волокна).
  • IIb тип: быстрые гликолитические волокна (БР) – крупные, быстрые, сильные, быстроутомляемые мышечные волокна, с высоким порогом активации мотонейрона. Активируются при кратковременных нагрузках и развивают большую силу. Получают энергию через процессы анаэробного окисления, источником энергии является гликоген. В этих волокнах обнаруживают большое количество гликогена и мало митохондрий.

Поскольку скорость сокращения самых быстрых мышечных волокон несколько выше, чем скорость сокращений волокон IIb типа, самые быстрые волокна называются в литературе волокнами IIх типа.

Иногда выделяют волокна IIс типа — эти волокна не похожи на волокна ни I, ни II типа. Они проявляют как окислительную, так и гликолитическую активность и представлены лишь в небольшом количестве (около 1%). В зависимости от типа тренировок они могут переходить в волокна I или II типа.

Мышечные волокна возбуждаемые одним мотонейроном входят в состав одной двигательной единицы (ДЕ). Ске­летные мышцы человека состоят из ДЕ всех трех типов. Одни из них включают преимущественно медленные ДЕ, другие — быстрые, третьи — и те, и другие.

Критерий разделенияI типаIIa типаIIb типа
Скорость сокращения (определяется по миозиновой АТФ-азе)Медленные (частота нервных импульсов до 25 Гц)Средняя (25-50 Гц)Быстрые (частота нервных импульсов 50-100 Гц)
Обмен веществ (определяется по ферментам аэробных процессов, по ферментам митохондрий: сукцинатдегидрогеназе или СДГ)Окислительный (с кислородом)СмешанныйГликолитический (без кислорода)
Цвет (зависит от количества миоглобина)Красные (много миоглобина и митохондрий)Светло-красный (красный)Белые (мало миоглобина и митохондрий)
Порог активацииНизкийСреднийВысокий
Диаметр50 мкм80 мкм100 мкм
Утомление (при постоянной нагрузке)Снижение силы на 50% через несколько часовСнижение силы на 50% через 10 мин.Снижение силы на 50% через 1,5 мин.

На изображении показано строение скелетной мышцы (кликните для увеличения изображения)

Быстрые и медленные мышечные волокна

Классифицируются по активности фермента миозиновой АТФ-азы и, соответственно, по скорости сокращения мышц. Волокна, содержащие миозин с высокой активностью АТФ-азы, относят к быстрым волокнам, а те, что содержат миозин с более низкой активностью АТФ-азы, – к медленным.

Активность АТФ-азы наследуется и тренировки не влияют на соотношение быстрых и медленных волокон. Освобождение энергии, заключенной в АТФ, осуществляется благодаря АТФ-азе. Энергии одной молекулы АТФ достаточно для одного поворота (гребка) миозиновых мостиков.

Мостики расцепляются с актиновым филаментом, возвращаются в исходное положение, сцепляются с новым участком актина и делают гребок. Скорость одиночного гребка одинакова у всех мышц. Для очередного гребка требуется новая молекула АТФ.

В волокнах с высокой АТФ-азной активностью расщепление АТФ происходит быстрее, и за единицу времени происходит большее количество гребков мостиками, то есть мышца сокращается быстрее и, соответственно, сильнее.

Медленные окислительные волокна содержат множество митохондрий и обладают высокой способностью к окислительному фосфорилированию. Эти волокна могут содержать значительное количество липидов, но меньшее количество гликогена. Большая часть АТФ, произведенного такими волокнами, зависит от снабжения крови кислородом и топливных молекул.

Эти волокна окружают многочисленные капилляры. Они также содержат большое количество связывающего кислород миоглобина, который увеличивает поглощение кислорода тканями и способствует небольшому внутриклеточному накоплению кислорода.

Миоглобин придает темно-красный цвет, поэтому окислительные волокна часто называют красными мышечными волокнами.

В быстрых волокнах, также названных гликолитическими волокнами, напротив, содержится мало митохондрий, но они обладают высокой концентрацией гликолитических ферментов и большим запасом гликогена.

Из-за ограниченного использования кислорода их окружает относительно небольшое количество капилляров, и они содержат мало миоглобина.

Их называют белыми мышечными волокнами вследствие их более светлого цвета по сравнению с красными окислительными волокнами.

При легкой нагрузке (ходьба, прогулка на велосипеде, бег трусцой) энергия поставляется за счет аэробной системы — окисление жиров в мышечных волокнах типа I. Запасы жира неисчерпаемы.

При нагрузке средней мощности (бег, езда на велосипеде) в мышечных волокнах типа I помимо окисления жиров растет доля окисления углеводов, хотя энергообеспечение все еще протекает аэробным путем. Хорошо подготовленные спортсмены могут поддерживать максимальную аэробную нагрузку 1-2 часа. За это время происходит полное истощение запаса углеводов.

При повышении интенсивности работы (соревновательный бег на 10 км) включаются мышечные волокна типа IIа и окисление углеводов становится максимальным. Энергообеспечение идет за счет кислородного механизма, но и лактатная система вносит свой вклад.

Организм перерабатывает молочную кислоту с той скоростью, с какой ее производит. Если уровень интенсивности и доля участия лактатной системы в энергообеспечении продолжают расти, молочная кислота накапливается и быстро истощаются запасы углеводов.

Такая нагрузка может поддерживаться в течение ограниченного периода времени, в зависимости от тренированности спортсмена.

Во время спринтерской тренировки максимальной мощности или при выполнении интервалов с высокой интенсивностью включаются мышечные волокна типа IIb. Энергообеспечение идет полностью анаэробным путем. Источник энергии — исключительно углеводы. Показатели молочной кислоты сильно возрастают. Продолжительность нагрузки не может быть большой.

Интенсивность нагрузкиАктивные волокнаИсточники энергииЭнергетические системы
НизкаяТип IЖирыКислородная
СредняяТип I + IIаЖиры и углеводыКислородная и лактатная
ВысокаяТип I + Тип IIа + IIbУглеводыЛактатная и фосфатная

Гликолитические волокна, как правило, намного больше в диаметре, чем окислительные волокна. Чем больше диаметр, тем больше максимальное растяжение, которого они могут достичь (то есть тем они сильнее).

Классифицируются по окислительному потенциалу мышцы, то есть по количеству митохондрий в мышечном волокне. Митохондрии – это клеточные органеллы, в которых глюкоза или жир расщепляется до углекислого газа и воды, ресинтезируя АТФ, необходимую для ресинтеза креатинфосфата.

Креатинфосфат используется для ресинтеза миофибриллярных молекул АТФ, которые используются для мышечного сокращения.

Вне митохондрий в мышцах также может происходить расщепление глюкозы до пирувата с ресинтезом АТФ, но при этом образуется молочная кислота, которая закисляет мышцу и вызывает ее утомление.

По этому признаку мышечные волокна подразделяются на три группы:

  1. Окислительные мышечные волокна. В них масса митохондрий так велика, что существенной прибавки ее в ходе тренировочного процесса уже не происходит.
  2. Промежуточные мышечные волокна. В них масса митохондрий значительно снижена, и в мышце в процессе работы накапливается молочная кислота, однако достаточно медленно, и утомляются они гораздо медленнее, чем гликолитические.
  3. Гликолитические мышечные волокна имеют очень незначительное количество митохондрий. Поэтому в них преобладает анаэробный гликолиз с накоплением молочной кислоты, отчего они и получили свое название.

У не тренирующихся людей обычно быстрые волокна – гликолитические и промежуточные, а медленные – окислительные. Однако при правильных тренировках на увеличение выносливости быстрые мышечные волокна превращаются из гликолитических в промежуточные.

Также возможен переход промежуточных волокон в окислительные. При силовых тренировках промежуточные волокна могут переходить в гликолитические.

При этом соотношение медленных и быстрых волокон генетически предопределено практически не меняется вне зависимости от тренировок (переход не более 1-3%).

Смотрите также

Источник: https://JustSport.info/fitness/tipy-myshechnykh-volokon

Все о медицине
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: